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What we’ll cover

Why science communication matters

Different ways to do science communication
Working with the media

Communicating via social media

Writing a blog post

Tips on explaining complex concepts

How to find and use suitable images

How to avoid Al hype

Unconventional ways to do science communication
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Aims

e By the end of the session, you should be ready to plan and write a
blog post.
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Causal Confounds in Sequential Decision Making

AUTHORS AFFILIATIONS PUBLISHED
Gokul Swamy BRI, ChU Mowvember 28, 2022
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Astandard assumption in sequential decision making is that we cbserve everything required to make good decisions. In
practice however, this isn't always the case. We discuss two specific examples (temporally correlated noise (a) and
unobserved contexts ()] that have stymied the use of IL/RL algorithms {in autonomous helicopters {b) and self-driving

(d}). We derive provably correct algorithms for both of these problems that scale to continuous control problems.

Reinforcement Learning (RL) and Imitation Learning (IL) methods have achieved impressive
results in recent years like beating the world champion at Go or controlling stratospheric
balloons. Usually, these results are on problems where we either a) observe the full state or b)
are able to faithfully execute our intended actions on the system. However, we frequently have
to contend with situations where this isn't the case: our self-driving car might miss a person’s
hand gestures or persistent wind might make it difficult to fly our quadcopter perfectly straight.
These sorts of situations can cause standard IL approaches to perform poorly ([1]. [2]). In causal
inference, we call a random variable that we don't observe that influences a relationship we'd like
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From Motor Control to Team Play in
Simulated Humanoid Football

Shyl Lhu' ', Gy Lewer™ ', e Wang ™ ', Jowh Merel ', 5. M. AN D', Dianvied Plomases ' W M
Crarmochl’, Yevad Tawsa ', Shayegen Omidihaficl', Abbes Abdolmaiekd ', Nouh ¥ Shepel’, Loosand
Nasenchever', Lube Marris', Saras Tunpassvunahonl ', 1. Fraock Seag' . Markes Willaseker ', Pusl Mulior

Tuomans Hasrsoin', Breadun D Tracey', Karl Tayls', Theee Genepel’ sng Nicolas 1o

Intelligent bebuniour in the plrysical world exhibits structure ot mulriple spacial and temgueal scales.

Although movements are ultimatcly execeted ot the lewel of instantancoss muncle tennion

o pount
torgees, they must be schectod 30 as 0o serve goals defined oo mvech loagor timescales, and i sormm of
relations that extend far beyond the body el witimately involviag coordination with other agents
Recent research in anificial istelligence has shown the promise of learning dased spproaches 1o the
respective probiems of complex movement, longer-term planming, and melt agent coordinackon. How
over, there is Nmited rescarch aimod at thelr istegration. We study thin prodlem by traiming teams

of physically simulated hbumancdd avatars 10 play foothall in & roalistic virtudd coviromment. We de
welop & method that combines imitarion harming, dnghe and multi agene rrinforcement leorning and
popularion based treining, sed mukes use of transferabic represcstationm of behuvaoer for decron mak
ing at different levels of abutraction. In & sequence of training stagpes, players first learn w0 control »
fully articulased hoddy to perform realiseic. human like movements sech as rummeng and turmng they
then acquinre mibd evel foothall shills such as dribdding and dooting: fnally they dovelop awaronesw
of others aad kearn to play s 3 team, wucoenfully bridgiag the gap betwoen low-devel mosor control
# a time scade of milliseconds, and coordinated gosl-Sirectod bohaviour &5 & team o the timescale
of rens of seconds. We investigace the emergence of behuviosry st different bevels of sbstracnon,
well as the repe athoons that enderbie these boh v wsing soveral analyses techmgques. incheding
statistics from real-world sports dy Our work 2 comphete of =
Secindon-maling a¢ multipde scades in 2 phywically embodiod mudts agent sctting. We provide footage of
the learned fooehall dhillls in the supplemmentary video.

Keywords: Muli Apems, ReimGrrement Léarming, Comtimpmons Control
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PAPERS

https://youtu.be/HTON70dbWO0o
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ChatGPT maker OpenAlreleases ‘not
fully reliable’ tool to detect Al generated
content

h OpenAlis calling on educators to give their feedback on how the
l @ tool is used, amid rising concerns around Al-assisted cheating at
G ua l‘ la n -

Josh Taylor ‘ TS

News website of the year

¥ @joshgnosis

f v ®

0 ChatGPT creato has released a tool to detect Al generated content Photograph:
Bonaventure/AFP/Getty Images

OpenAl, the research laboratory behind Al program ChatGPT, has released a
tool designed to detect whether text has been written by artificial
intelligence, but warns it’s not completely reliable - yet.

In a blog post on Tuesday, OpenAl linked to a new classifier tool that has
been trained to distinguish between text written by a human and that
written by a variety of Al, not just ChatGPT.

Open Al researchers said that while it was “impossible to reliably detect all
Al-written text”, good classifiers could pick up signs that text was written by
Al The tool could be useful in cases where Al was used for “academic
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been trained to distinguish between text written by a human and that
written by a variety of Al, not just ChatGPT.

Open Al researchers said that while it was “impossible to reliably detect all
Al-written text”, good classifiers could pick up signs that text was written by
Al The tool could be useful in cases where Al was used for “academic
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Why science communication matters

Inspiring the next generation

Science for society

Transparency

De-hyping science

Adding value to the research

Why science communication matters
(https.//voutu.be/hHFItr j4Fl)



https://youtu.be/hHFltr_j4FI
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Have you done any science communication before?
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Different ways to do science communication

TV, public talks, radio Blog posts

Exhibitions

Collaboration with

. Workshops
artists

Competitions Social media

Podcasts Exhibitions

Different ways to do science communication
(https://youtu.be/Jb8eRfItOLE)
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Different ways to do science communication

Books, TV, radia

shows, public talks Sclence museums

Collaboration with

artists Exhibitions

Robatics

competitions Workshops

A podcast Social megia



/A\lhub

Working with the media

* Your press office

e Science journalists

How to approach the media: An interview with Evan Ackerman
(https://youtu.be/5kslhRzoDRw)



https://youtu.be/5kslhRzoDRw
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Working with the media - some tips

* Pitching
o Tell a story - broader implications of your work (don’t just state results)
o Avideo /image can be helpful in “selling” the story
* Types of questions science journalists may ask
O Background to the research - where did the idea come from?
o Context - state of the field, previous work, challenges, future plans
e Tips for answering
O Make answers accessible
O Avoid technical specifics
o Connect your research to real-world issues or applications
e Use your University Press Office
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The importance of owning your sci-comm

* When someone else reports on your work you lose control over the content.

Sv?tio; Iérc)’géammed To Fall In Love
irl Goe
s Too Far

e oo “‘d
1cs\\'\ba ue
d o o yan e.’za | . ' . .
Co“\ e M”.raCle robot will revolutionise brain surgery for
= epilepsy sufferers

'KILLER" BOTS Rogue superhuman Al ‘could
kill everyone’ and wipe out human race...
the tech should be controlled like nukes
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A starting point to communicating directly:
social media




Alhub

A starting point to communicating directly:
social media

* Ways to use social media for your research:
O Passive
O Active
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How using social media can benefit your research
- passive

* Follow other researchers in the field.
o Who do they follow?
o Follow their followers.
O Build your network.
e Find out about events / workshops / other
interesting content.
e Find out about grants / positions / opportunities.
e Follow journalists.




Alhub

How using social media can benefit your research
- active

e Use to promote your research.
O Can be a great tool for refining your message.
0 How would you compress your research into a

tweet, or thread?

e Engage in constructive discussions.

e Build connections with other researchers,
journalists, organisations.

e Feel part of a community.

e Amplify the voices of others.
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Caveats

e (Can be easy to get sucked into
controversies and arguments.

e Short-form of tweets (for example) often
not conducive to in-depth discussions.
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Finding your story
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Your story as tweets

The questions:

What problem are you trying to solve? *

e Whyisitimportant?

* How does this relate to people’s lives?
 What is the current state of the field?

* What’s the contribution of your research? *
 What are the implications of your findings?
 What challenges did you face?

 What are the limitations of your contribution?
 What are you planning next?

(* minimum starting point for communication on a social media
platform)
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Example from a ML research paper

10P Publishing

@ CrossMark

OPEN ACCESS

RECEIVED
1 July 2022

REVISED
17 October 2022

ACCEPTED FOR PUBLICATION
11 November 2022

PUBLISHED
29 December 2022

Original Content from
this work may be used
under the terms of the
Creative Commons

Attribution 4.0 licence.

Any further distribution

Mach. Learn.: Sci. Technol. 3 (2022) 045034

MACHINE
LEARNING

Science and Technology

https://doi.org/10.1088/2632-2153/aca23d

PAPER

Self-supervised learning of materials concepts from crystal
structures via deep neural networks

Yuta Suzuki"»*(, Tatsunori Taniai’(*, Kotaro Saito”'(", Yoshitaka Ushiku’"® and Kanta Ono"**

! The Graduate University for Advanced Studies (SOKENDAI), Ibaraki, Japan

2 Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization (KEK), Ibaraki, Japan
¥ OMRON SINIC X Corporation, Tokyo, Japan

4 Randeft, Inc., Tokyo, Japan

* Department of Applied Physics, Osaka University, Osaka, Japan

% Current affiliation: Advanced R&D and Engineering Company, TOYOTA MOTOR CORPORATION, Shizuoka, Japan.

* Author to whom any correspondence should be addressed.

E-mail: ono@ap.eng.osaka-u.ac.jp

Keywords: materials informatics, deep metric learning, crystal structure, self-supervised learning

Supplementary material for this article is available online
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Your story as tweets

The questions:

* | What problem are you trying to solve?
* Whyisitimportant?

 How does this relate to people’s lives?
 What is the current state of the field?
 What’s the contribution of your research?
 What are the implications of your findings?
 What challenges did you face?

 What are the limitations of your contribution?
 What are you planning next?

Materials discovery is a slow process
that involves searching through a vast
space of potential structures. Key to
accelerating this process is
understanding how the structure of a
material affects its function. Suzuki et a/
have used ML to better understand,
and map, this relationship.
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Your story as tweets

The questions:

*  What problem are you trying to solve?
* | Why is it important?
 How does this relate to people’s lives?
 What is the current state of the field?
 What’s the contribution of your research?
 What are the implications of your findings?
 What challenges did you face?

 What are the limitations of your contribution?
 What are you planning next?

The discovery of new materials is
essential to making progress in many of
the technological challenges we face,
such as the development of more
efficient solar cells or batteries, and
clean water production.
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Turning your tweets into a blog post
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What makes a good story?

e Pitched at the right level for the audience.
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What makes a good story?

e Pitched at the right level for the audience.
e Connects with the audience:
O Contains a link to application(s) from the real world.

o Touches on a lived experience / passion / problem.
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e (Contains a true representation of the work and its implications,

avoiding hype and inflated expectations
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What makes a good story?

e Pitched at the right level for the audience.

e Connects with the audience:
O Contains a link to application(s) from the real world.
o Touches on a lived experience / passion / problem.

e Contains a true representation of the work and its implications,

avoiding hype and inflated expectations

e Has a structure and natural flow.
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What makes a good story?

e Pitched at the right level for the audience.

e Connects with the audience:
O Contains a link to application(s) from the real world.
o Touches on a lived experience / passion / problem.

e Contains a true representation of the work and its implications,

avoiding hype and inflated expectations
e Has a structure and natural flow.
e Poses a question/hypothesis at the beginning, which the author

goes about answering throughout the post.
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Tips on writing a blog post

* As mentioned, first establish who your audience is - this

determines the level to pitch the post.
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* Think about your key message - what do you want to convey to

the audience?
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Tips on writing a blog post

* First establish who your audience is - this determines the level
to pitch the post.
* Think about your key message - what do you want to convey to

the audience?

e Have your bullet point summaries to hand. Do these have a

logical flow? Do you need to add others, or change the order?
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Tips on writing a blog post
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* First establish who your audience is - this determines the level

to pitch the post.

* Think about your key message - what do you want to convey to . .
the audience? i
e Have your bullet point summaries to hand. Do these have a /
&2

logical flow? Do you need to add others, or change the order? 0 &2
 Expand your tweets into paragraphs. Clarify, explain and give
examples. More on this to follow...

* Addimages/diagrams/videos to help explain key concepts.
Credit: Max Springer
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Tips on writing a blog post

* First establish who your audience is - this determines the level
to pitch the post.

* Think about your key message - what do you want to convey to
the audience?

e Have your bullet point summaries to hand. Do these have a
logical flow? Do you need to add others, or change the order?

 Expand your tweets into paragraphs. Clarify, explain and give

examples. More on this to follow...
* Addimages/diagrams/videos to help explain key concepts.

 Read, re-read and seek feedback.
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into paragraphs

expand your tweets

The next step
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Materials discovery is a slow process that involves searching through a vast space of potential
structures. Key to accelerating this process is understanding how the structure of a material
affects its function. Suzuki et al have used ML to better understand, and map, this relationship.
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Imagine you are working on developing a new material for an efficient battery. Where do you
start? How do you go about finding that material? What structure would give you the properties

you are looking for?
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Materials discovery is a slow process that involves searching through a vast space of potential

structures.
. Suzuki et al have used ML

4

Imagine you are working on developing a new material for an efficient battery. Where do you
start? How do you go about finding that material? What structure would give you the properties
you are looking for? In the past, this would have involved a time-consuming experimental
fabrication process, most likely informed by theoretical models. Given the sparsity of materials in
a vast search space, the process of discovering and fabricating a new material could take many

years.

their research, Suzuki et al used machine learning (ML) techniques
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Simplifying complex concepts
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Using a couple of sentences about their method and contribution as an example.

Level 1: suitable for a ML/physics audience.

* Suzuki et al have used a self-supervised deep learning approach to learn
material embeddings from crystal structures of over 120 000 materials. This
enabled them to capture relationships between the structure of a material
and its properties.



Alhub

@ PAPER
. Self-supervised learning of materials concepts from crystal
LEVEIS Of com pIEXIty PPEHACCESS structures via deep neural networks

1July 2022 Yuta Suzuki" ", Tatsunori Taniai’ ", Kotaro Saito”' ", Yoshitaka Ushiku' " and Kanta Ono""*

Using a sentence about their method and contribution as an example.

Level 1: suitable for a ML/physics audience.

* Suzuki et al have used a self-supervised deep learning approach to learn
material embeddings from crystal structures of over 120 000 materials. This
enabled them to capture relationships between the structure of a material
and its properties.
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Level 2: suitable for a tech/science-savvy audience (e.g readers of Wired of MIT
Tech Review)

e Suzuki and colleagues have used a deep neural network (a type of machine
learning algorithm) to better understand relationships between the structure
of a material and its properties. Such properties could include
superconductivity, or magnetism, for example. The researchers trained their
model on 120 000 known materials and the algorithm learned the key
features of each material, then mapped that material to a point in a multi-
dimensional space. The closer two materials are to one another in this space,
the greater the similarity between their properties.
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Levels of complexity

Suzuki and colleagues have used a deep
neural network (a type of machine learning
algorithm) to better understand relationships
between the structure of a material and its
properties. Such properties could include
superconductivity, or magnetism, for
example. The researchers trained their
model on 120 000 known materials and the
algorithm learned a representation of each
material, mapping each one to a pointin a
multi-dimensional space. The closer two
materials are to one another in this space,
the greater the similarity between their
properties.
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Level 3: suitable for a more general audience.

 Researchers have used a machine learning algorithm to better understand
materials and their properties. Such properties could include
superconductivity, or magnetism, for example. The algorithm was fed data
about over 120 000 different materials and used this information to group
the materials according to the similarity of their properties. The method for
clustering similar materials is like that used for recommender systems
(“you’ve seen this film, so here’s another you may like”). However, instead of
the algorithm suggesting films similar to those you’ve seen before, it can
indicate materials with similar properties.
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Enhancing your blog posts with images and videos is important for two reasons.

* |t can help increase the visual impact of your work.
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Creating a portfolio of media

Enhancing your blog posts with images and videos is important for two reasons.
* |t can helpincrease the visual impact of your work.

* |t aids the understanding of concepts you are describing.

Credit: Michael Janner. From BAIR blog.



Alhub

Creating a portfolio of media

[ school location . @ . . anchor node
— retained edge

* Option 1: use photos, graphs, images from your own research. --- cutedge [ [ [E [ school attendance zone

Credit: Fanglan Chen

Credit: Matthew Stephenson and Frederic Abraham

Credit: Guillem Alenya
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 Option 1: use photos, graphs, images from your own research.
* Option 2: create your own images.

* Option 3: buy stock images.
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e Option 1: use photos, graphs, images from your own research.

* QOption 2: create your own images.

e Option 3: buy stock images.

Option 4: use images freely available online.
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Creating a portfolio of media

* Option 1: use photos, graphs, images from your own research.

* Option 2: create your own images. @ @ @ @@@

* Option 3: buy stock images. (N—"  BY W\ BY NC SA |

* Option 4: use images freely available online. @ ® @ @ ® @
[N—~__BY SA JN_—~ BY _ND

 Be sure to check the license conditions for reproducing the

image. @ ® @ @@@@
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Creative commons licenses

Creative Commons is a nonprofit organization that helps
overcome legal obstacles to the sharing of knowledge and
creativity.

They provide Creative Commons licenses and public domain
tools that give every person and organization in the world a
free, simple, and standardized way to grant copyright
permissions for creative and academic works; ensure proper
attribution; and allow others to copy, distribute, and make use

of those works

©Mo.

Qloce

©Nole

@O0

QOO

OB
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Creating a portfolio of media

https://unsplash.com/
https://snappygoat.com/ m

https://www.pexels.com/

https://burst.shopify.com/

https://www.flickr.com/

pIXxabay
SNAPPY ¢ GORT
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Better Images of Al
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Have you noticed that news stories and
marketing material about Artificial
Intelligence are typically illustrated with
clichéd and misleading images ?

Better Images of Al
https://betterimagesofai.org/

Humanoid robots, glowing brains, outstretched
robot hands, blue backgrounds, and the Terminator.

These stereotypes are not just overworked, they can
be surprisingly unhelpful.



https://betterimagesofai.org/
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Fish reversed - Rens Dimmendaal & David Clode

Autonomous Driving - Anton Grabolle Quantified Human - Alan Warburton

GPU shot etched 5 - Fritzchens Fritz
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Hype

Whilst it can be good to create a buzz around your research, too much hype tends to:

e Set inflated expectations about the technology,

e Drive unnecessary fears in the general pubilic,

e Detracts from meaningful discussions about the actual aspects of the technology that we need

to be concerned about.
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 Don’t exaggerate the impact of your work:
* Be specific about your contribution.

 Make any limitations clear.
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* Be specific about your contribution.
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* Prioritise scientific accuracy in your headline.
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Tips for avoiding hype in your sci-comm

 Don’t exaggerate the impact of your work:
* Be specific about your contribution.
 Make any limitations clear.
* Avoid anthropomorphism.
* Prioritise scientific accuracy in your headline.
* Choose relevant images: avoid stereotypical images of robots

from science fiction!
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Check your blog post / tweets for hype
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Alhub

Unconventional ways of doing sci-comm

Some examples to think about:

e Photograph essay e Dance

e Comic ® Theatre play

e Stand-up monologue e Painting

e Short film e Sculpture

e Sci-fi book e Music festival performance
e Food dish e Children’s book

® Escape room e Video game

e Sitcom

Who is your audience, and could any of these formats help you communicate better?
Are there any aspects of your research that work with any of these formats?
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Next steps

e Try out some of the exercises from this talk.

® From 3-5pm: an informal session to discuss any ideas you have regarding sci-
comm.

® |Interested in covering AAAI for Alhub?
® Reach out to us - we can work with you to help you shape your story.

E aihuborg@gmail.com https://aihub.org
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