ΑΙhub.org
 

#RoboCup2019 @Home finals


by
08 July 2019



share this:


For the final stage of the @Home competition, the top 2 teams were selected in each of the sub-leagues (domestic, social and open platforms) to perform demos inside a 10 minute window followed by 5 minutes of questions from the judges. The scoring judges were comprised by trustee board members, external judges and members of the technical and organizing committees.

Social Standard Platform League
Uchile (2nd place) and UTS (1st place)

Chile showed an episodic memory demo based on their ongoing research, while UTS showed pepper as a social robot interacting with the “owner of the house” navigating environments and searching the house for the owner’s daughter.

Domestic Standard Platform League
Tidyboy (2nd place) and TUe (1st place)

Tidyboy did a demo about a manipulation task where the robot opened a cabinet door to get a juice, and then a snack from the kitchen table. It then placed both in a wheeled cart that it grabbed and took to the livingroom for a house guest.

TUe first showed how the robot understands pointing at objects in the room related to their research on human behavior recognition. Afterwards, they did a party demo where the robot recognized people in the livingroom and interfaced with a periscope app on a phone to get people’s drink orders. The robot then proceeded to navigate to the fridge, pushing a cart, to bring back multiple drinks at once and asked help from a bartender to get drinks from the fridge

Open Platform League
Pumas (2nd place) and Homer (1st place)

Pumas’ demo included both their robots from OPL and DSPL and showed how the robots can collaborate with tasks using cloud services like Alexa in social tasks like the robot party host.

As part of Homer’s final demo, they showed links to their ongoing research using their two open-platform robots about autonomous mapping, and adaptive learning from demonstration. As their last task of the demo they showcased the robot cleaning the toilet as part of a manipulation task that involves the use of contact forces.



tags:


Maru Cabrera is Research Associate at University of Washington.
Maru Cabrera is Research Associate at University of Washington.




            AIhub is supported by:



Related posts :



Machine learning for atomic-scale simulations: balancing speed and physical laws

How much underlying physics can we safely “shortcut” without breaking a simulation?

Policy design for two-sided platforms with participation dynamics: Interview with Haruka Kiyohara

  09 Oct 2025
Studying the long-term impacts of decision-making algorithms on two-sided platforms such as e-commerce or music streaming apps.

The Machine Ethics podcast: What excites you about AI? Vol.2

This is a bonus episode looking back over answers to our question: What excites you about AI?

Interview with Janice Anta Zebaze: using AI to address energy supply challenges

  07 Oct 2025
Find out more about research combining renewable energy systems, tribology, and artificial intelligence.

How does AI affect how we learn? A cognitive psychologist explains why you learn when the work is hard

  06 Oct 2025
Early research is only beginning to scratch the surface of how AI technology will truly affect learning and cognition in the long run.

Interview with Zahra Ghorrati: developing frameworks for human activity recognition using wearable sensors

  03 Oct 2025
Find out more about research developing scalable and adaptive deep learning frameworks.

Diffusion beats autoregressive in data-constrained settings

  03 Oct 2025
How can we trade off more compute for less data?

Forthcoming machine learning and AI seminars: October 2025 edition

  02 Oct 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 3 October and 30 November 2025.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence