ΑΙhub.org
 

History playground – finding patterns in historical newspapers


by
13 January 2020



share this:

Ever fancied finding out more about historical trends? Well, thanks to researchers at the University of Bristol, and their History Playground tool, anyone can analyse the content from a collection of historical British and American newspapers.

Macroscopic patterns of continuity and change over the course of centuries can be detected through the analysis of time series extracted from massive textual corpora. Similar data-driven approaches have already revolutionised the natural sciences. It is widely believed that there is similar potential for the humanities and social sciences. As such, new interactive tools are required to discover and extract macroscopic patterns from these vast quantities of data.

History Playground enables users to search for small sequences of words and retrieve their relative frequencies over the course of history. The tool makes use of scalable algorithms to first extract trends from textual corpora, before making them available for real-time search and discovery, presenting users with an interface to explore the data.

At present there are two large sets of text available:

Find out how to start using the History Playground by watching this short video:

Watch a further introduction to the project here:

History Playground uses the concept of n-grams, defined as short sequences of words. It is these n-grams that users search for when they use the tool. N-gram models are also widely used in the fields of natural language processing, probability, communication theory and data compression.

The team hope that in the long term, as more large textual datasets are released and additional feedback from the community helps to improve the Playground, they will be able to incorporate more varied and interesting corpora into the tool. In addition they are continuing to develop methods of analysis and additional views and visualisations. The tool also has the potential to incorporate text in languages other than English. For looking at more contemporary sources of data (for example, social media) the time resolution can be adjusted to study daily or even hourly changes.

This work is part of the ERC ThinkBIG project, Principal Investigator Nello Cristianini, University of Bristol.

Nello Cristianini is a Professor of Artificial Intelligence at the University of Bristol. His research interests include data science, artificial intelligence, machine learning, and applications to computational social sciences, digital humanities and news content analysis.

 

 

Read the full research articles on this topic:




Nello Cristianini is a Professor of Artificial Intelligence at the University of Bristol.
Nello Cristianini is a Professor of Artificial Intelligence at the University of Bristol.




            AIhub is supported by:


Related posts :



The Machine Ethics podcast: Responsible AI strategy with Olivia Gambelin

Ben and Olivia chat about scalable AI strategy, AI ethics and responsible AI (RAI), bad innovation, values for RAI, risk and innovation mindsets, who owns the RAI strategy, and more.

AI weather models can now beat the best traditional forecasts

  06 Jan 2025
Using a diffusion model approach, a new system generates multiple forecasts to capture the complex behaviour of the atmosphere.

Human-AI collaboration in physical tasks

  03 Jan 2025
Creating an intelligent assistant that uses the sensors in a smartwatch to support physical tasks such as cooking and DIY.
monthly digest

2024 digest of digests

  02 Jan 2025
We look back through the archives of our monthly digest to pick out some highlights from the year.
monthly digest

AIhub monthly digest: December 2024 – attending NeurIPS, multi-agent path finding, and tackling illegal mining

  31 Dec 2024
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

AIhub blogpost highlights 2024

  30 Dec 2024
As the year draws to a close, we take a look back at some of our favourite blog posts.

AIhub interview highlights 2024

  27 Dec 2024
Join us for a look back at some of the interviews we've conducted with members of the AI community.

New AI tool generates realistic satellite images of future flooding

  24 Dec 2024
The method could help communities visualize and prepare for approaching storms.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association