ΑΙhub.org
 

Can machines read our minds?


by
20 March 2020



share this:

AIhub | Nello Cristianini | Can machines read minds
Many of us spend a significant portion of our day online and, in doing so, through our interactions with social media and IoT devices, leave a trail of “digital footprints” in our wake. Could this data be used by machine learning algorithms to infer psychometric information about us, including our emotions, attitudes, aptitudes, beliefs and more? A team at the University of Bristol have been finding out.

In an article published in Minds and Machines the Bristol team review 26 empirical studies; these studies concern deploying algorithms to predict personal information using online data. One of the key aims of the review is to better understand a research trend that has emerged across a wide range of communities and to explore the philosophical and ethical consequences of the techniques being developed. The team were interested in understanding what kind of psychological information can be inferred on the basis of our online activities, and whether an intelligent system could use this information to improve its ability to subsequently steer our behaviour towards its own goals.

The studies reviewed covered the inference (from “digital footprints”) of the following: affect and emotion, aptitudes and skills, attitudes and orientations, personality, and disorders and conditions. The team found that it is possible for machine learning algorithms to infer such information about us on the basis of online samples of our behaviour. They also learned that it is possible for the algorithms to be used to segment users into groups that share some psychological trait or mental state.

This work identifies just a portion of the many studies in which different types of behavioural samples could be used by an algorithm to infer information about us. Many more methods are still being studied and developed across different communities for the same purpose.

As the types and amount of interaction between us and our online devices increases, and as new types of sensors for measuring behavioural signals are developed, there is the expectation that by combining these sources of information a machine learning algorithm could form a very accurate image of us. The likely convergence of these technologies and methods raises many ethical issues. These issues will not be solved entirely by legislation, and the individual research communities should not be expected to develop ethical guidelines on their own. Rather, it is imperative that policymakers and researchers understand the scope of these developments, in order to better facilitate the ongoing discussions about the growing use and convergence of such machines.

Read the published papers to find out more:
Can Machines Read our Minds? Burr, C. & Cristianini, N. Minds & Machines (2019).

An Analysis of the Interaction Between Intelligent Software Agents and Human Users Burr, C., Cristianini, N. & Ladyman, J. Minds & Machines (2018) 28: 735.

This work is part of the ERC ThinkBIG project, Principal Investigator Nello Cristianini, University of Bristol.




Nello Cristianini is a Professor of Artificial Intelligence at the University of Bristol.
Nello Cristianini is a Professor of Artificial Intelligence at the University of Bristol.




            AIhub is supported by:


Related posts :



Exploring counterfactuals in continuous-action reinforcement learning

  20 Jun 2025
Shuyang Dong writes about her work that will be presented at IJCAI 2025.

What is vibe coding? A computer scientist explains what it means to have AI write computer code − and what risks that can entail

  19 Jun 2025
Until recently, most computer code was written, at least originally, by human beings. But with the advent of GenAI, that has begun to change.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

  18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Interview with Mahammed Kamruzzaman: Understanding and mitigating biases in large language models

  17 Jun 2025
Find out how Mahammed is investigating multiple facets of biases in LLMs.

Google’s SynthID is the latest tool for catching AI-made content. What is AI ‘watermarking’ and does it work?

  16 Jun 2025
Last month, Google announced SynthID Detector, a new tool to detect AI-generated content.

The Good Robot podcast: Symbiosis from bacteria to AI with N. Katherine Hayles

  13 Jun 2025
In this episode, Eleanor and Kerry talk to N. Katherine Hayles about her new book, and discuss how the biological concept of symbiosis can inform the relationships we have with AI.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

  12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Graphic novel explains the environmental impact of AI

  11 Jun 2025
EPFL’s Center for Learning Sciences has released Utop’IA, an educational graphic novel that explores the environmental impact of artificial intelligence.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence