ΑΙhub.org
 

Shortcuts to artificial intelligence – a tale


by
19 May 2020



share this:
shortcuts-to-ai

The current paradigm of artificial intelligence emerged as the result of a series of cultural innovations, some technical and some social. Among them are seemingly small design decisions, that led to a subtle reframing of some of the field’s original goals, and are now accepted as standard. They correspond to technical shortcuts, aimed at bypassing problems that were otherwise too complicated or too expensive to solve, while still delivering a viable version of AI.

Far from being a series of separate problems, recent cases of unexpected effects of AI are the consequences of those very choices that enabled the field to succeed, and this is why it will be difficult to solve them. Research at the University of Bristol has considered three of these choices, investigating their connection to some of today’s challenges in AI, including those relating to bias, value alignment, privacy and explainability.

1) Correlation vs causation
One important consequence of training statistical algorithms to emulate the decisions or behaviours of humans (e.g. recommending a book) is that we no longer value so highly the reason why the decision is made, so long as the action it generates is appropriate. Predictions count more than explanations, knowing ‘what’ counts more than knowing ‘why’, and ‘correlation trumps causation’.

2) Data from the wild
The second shortcut was summarised in a paper by Halevy, Norvig and Pereira which draws general lessons from the success stories of speech recognition and machine translation. It identifies the reason for those successes being the availability of large amounts of data, which had already been created for different purposes. Data gathered from the wild has been crucial in the design of object recognition systems, face recognition, and machine translation. The ubiquitous word embeddings that allow us to represent the meaning of words before we process them, are also all learned from data gathered from the wild.

3) Proxies and implicit feedback
Rather than asking users explicitly what they wanted the AI system to do, designers started making use of implicit feedback, which is another way of saying that they replaced unobservable quantities with cheaper proxies. Understanding the misalignment between a proxy and the intended target has become an important question for AI.

What has been accomplished by the AI research community over the past 20 years is remarkable, and much of this could not have been achieved at the time without taking “shortcuts”, including the three that have been summarised above. With the benefit of hindsight we can, however, reflect on how we introduced assumptions into our systems that are now generating problems, so that we can work on repairing and regulating the current version of AI. The same methods and principles that are perfectly innocuous in a certain domain, can become problematic only after being deployed in different domains. This is the space where we will need better informed regulation.

Read the research to find out more:
Shortcuts to Artificial Intelligence Cristianini, N. Machines We Trust. MIT Press (forthcoming)

Further papers that may be of interest:
Can Machines Read our Minds? Burr, C. & Cristianini, N. Minds & Machines (2019).

An Analysis of the Interaction Between Intelligent Software Agents and Human Users Burr, C., Cristianini, N. & Ladyman, J. Minds & Machines (2018) 28: 735.

This work is part of the ERC ThinkBIG project, Principal Investigator Nello Cristianini, University of Bristol.




Nello Cristianini is a Professor of Artificial Intelligence at the University of Bristol.
Nello Cristianini is a Professor of Artificial Intelligence at the University of Bristol.




            AIhub is supported by:


Related posts :



Generative AI is already being used in journalism – here’s how people feel about it

  21 Feb 2025
New report draws on three years of interviews and focus group research into generative AI and journalism

Charlotte Bunne on developing AI-based diagnostic tools

  20 Feb 2025
To advance modern medicine, EPFL researchers are developing AI-based diagnostic tools. Their goal is to predict the best treatment a patient should receive.

What’s coming up at #AAAI2025?

  19 Feb 2025
Find out what's on the programme at the 39th Annual AAAI Conference on Artificial Intelligence

An introduction to science communication at #AAAI2025

  18 Feb 2025
Find out more about our forthcoming training session at AAAI on 26 February 2025.

The Good Robot podcast: Critiquing tech through comedy with Laura Allcorn

  17 Feb 2025
Eleanor and Kerry chat to Laura Allcorn about how she pairs humour and entertainment with participatory public engagement to raise awareness of AI use cases

Interview with Kayla Boggess: Explainable AI for more accessible and understandable technologies

  14 Feb 2025
Hear from Doctoral Consortium participant Kayla about her work focussed on explanations for multi-agent reinforcement learning, and human-centric explanations.

The Machine Ethics podcast: Running faster with Enrico Panai

This episode, Ben chats to Enrico Panai about different aspects of AI ethics.

Diffusion model predicts 3D genomic structures

  12 Feb 2025
A new approach predicts how a specific DNA sequence will arrange itself in the cell nucleus.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association