ΑΙhub.org
 

Tutorial on fairness, accountability, transparency and ethics in computer vision


by
14 July 2020



share this:

CVPR FATE
The Computer Vision and Pattern Recognition conference (CVPR) was held virtually on 14-19 June. As well as invited talks, posters and workshops, there were a number of tutorials on a range of topics. Timnit Gebru and Emily Denton were the organisers of one of the tutorials, which covered fairness, accountability, transparency and ethics in computer vision.

As the organisers write in the introduction to their tutorial, computer vision is no longer a purely academic endeavour; computer vision systems have been utilised widely across society. Such systems have been applied to law enforcement, border control, employment and healthcare.

Seminal works, such as the Gender Shades project (read the paper here), and organisations campaigning for equitable and accountable AI systems, such as The Algorithmic Justice League, have been instrumental in encouraging a rethink from some big tech companies regarding facial recognition systems, with Amazon, Microsoft and IBM all announcing that they would (for the time being) stop selling the technology to police forces.

This tutorial helps lay the foundations for community discussions about the ethical considerations of some of the current use cases of computer vision technology. The presentations also seek to highlight research which focusses on uncovering and mitigating issues of bias and historical discrimination.

The tutorial comprises three parts, to be watched in order.

Part 1: Computer vision in practice: who is benefiting and who is being harmed?

Speaker: Timnit Gebru

Part 2: Data ethics

Speakers: Timnit Gebru and Emily Denton

Part 3: Towards more socially responsible and ethics-informed research practices

Speaker: Emily Denton

Following the tutorial there was a panel discussion, moderated by Angjoo Kanazawa, which you can watch below.




AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



Interview with Kate Candon: Leveraging explicit and implicit feedback in human-robot interactions

  25 Jul 2025
Hear from PhD student Kate about her work on human-robot interactions.

#RoboCup2025: social media round-up part 2

  24 Jul 2025
Find out what participants got up to during the second half of RoboCup2025 in Salvador, Brazil.

Visualising the digital transformation of work

Does it matter that the existing images of AI and digital technologies are so unrealistic?

#ICML2025 social media round-up part 2

  22 Jul 2025
Find out what participants got up to during the second half of the conference.

#RoboCup2025: social media round-up 1

  21 Jul 2025
Find out what participants got up to during the opening days of RoboCup2025 in Salvador, Brazil.

Livestream of RoboCup2025

  18 Jul 2025
Watch the competition live from Salvador!

A behaviour monitoring dataset of wild mammals in the Swiss Alps

  17 Jul 2025
Scientists at EPFL have created MammAlps, a multi-view, multi-modal video dataset that captures how wild mammals behave in the Swiss Alps.

#ICML2025 social media round-up 1

  16 Jul 2025
Find out what participants have been getting up to during the first couple of days of the conference.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence