ΑΙhub.org
 

New algorithm follows human intuition to make visual captioning more grounded

visual captions | AIhub

Annotating and labeling datasets for machine learning problems is an expensive and time-consuming process for computer vision and natural language scientists. However, a new deep learning approach is being used to decode, localize, and reconstruct image and video captions in seconds, making the machine-generated captions more reliable and trustworthy.

To solve this problem, researchers at the Machine Learning Center at Georgia Tech (ML@GT) and Facebook have created the first cyclical algorithm that can be applied to visual captioning models. The model is able to use the three-step processing during training to make the model more visually-grounded without human annotations or introducing additional computations when deployed, saving researchers time and money on their datasets.

The algorithm employs attention mechanisms, an intuitive concept for humans, when looking at a photo or video. This means that it tries to determine what aspects are important in an image and sequentially create a sentence explaining the visual.

This new model helps solve issues with previous attempts where an algorithm would make its decision based on prior linguistic biases instead of what it is actually “seeing.” This would lead to algorithms having what researchers refer to as object hallucinations. Object hallucinations occur when an algorithmic model assumes an object like a table is in a photo because in previous images, someone with a laptop was always sitting at a table. In this instance, the model is unable to understand a situation where a person has a laptop on their lap instead of a table. This new model helps alleviate the object hallucination problem, thus making the model more reliable and trustworthy.

Chih-Yao MaChih-Yao Ma, a Ph.D. student in the School of Electrical and Computer Engineering, envisions this model being used in situations like describing what happens in the scene as a technology to assist people who are visually impaired to overcome their real daily visual challenges. The model would be a good fit in such instances, because it can alleviate the linguistic bias and object hallucination issues in existing visual captioning models.

This work has been accepted to the European Conference on Computer Vision (ECCV), which takes place virtually August 23-28, 2020.

For more information on ML@GT at ECCV, visit our conference website.

Read the paper in full

Learning to Generate Grounded Visual Captions without Localization Supervision
Chih-Yao Ma, Yannis Kalantidis, Ghassan AlRegib, Peter Vajda, Marcus Rohrbach, Zsolt Kira
Georgia Tech, NAVER LABS Europe, Facebook




Allie McFadden is the communications officer for the Machine Learning Center at Georgia Tech and the Constellations Center for Equity in Computing at Georgia Tech.
Allie McFadden is the communications officer for the Machine Learning Center at Georgia Tech and the Constellations Center for Equity in Computing at Georgia Tech.

Machine Learning Center at Georgia Tech

            AIhub is supported by:



Subscribe to AIhub newsletter on substack



Related posts :

The Good Robot podcast: what makes a drone “good”? with Beryl Pong

  20 Feb 2026
In this episode, Eleanor and Kerry talk to Beryl Pong about what it means to think about drones as “good” or “ethical” technologies.

Relational neurosymbolic Markov models

and   19 Feb 2026
Relational neurosymbolic Markov models make deep sequential models logically consistent, intervenable and generalisable

AI enables a Who’s Who of brown bears in Alaska

  18 Feb 2026
A team of scientists from EPFL and Alaska Pacific University has developed an AI program that can recognize individual bears in the wild, despite the substantial changes that occur in their appearance over the summer season.

Learning to see the physical world: an interview with Jiajun Wu

and   17 Feb 2026
Winner of the 2019 AAAI / ACM SIGAI dissertation award tells us about his current research.

3 Questions: Using AI to help Olympic skaters land a quint

  16 Feb 2026
Researchers are applying AI technologies to help figure skaters improve. They also have thoughts on whether five-rotation jumps are humanly possible.

AAAI presidential panel – AI and sustainability

  13 Feb 2026
Watch the next discussion based on sustainability, one of the topics covered in the AAAI Future of AI Research report.

How can robots acquire skills through interactions with the physical world? An interview with Jiaheng Hu

  12 Feb 2026
Find out more about work published at the Conference on Robot Learning (CoRL).

From Visual Question Answering to multimodal learning: an interview with Aishwarya Agrawal

and   11 Feb 2026
We hear from Aishwarya about research that received a 2019 AAAI / ACM SIGAI Doctoral Dissertation Award honourable mention.



AIhub is supported by:







Subscribe to AIhub newsletter on substack




 















©2026.02 - Association for the Understanding of Artificial Intelligence