ΑΙhub.org
 

New algorithm follows human intuition to make visual captioning more grounded

visual captions | AIhub

Annotating and labeling datasets for machine learning problems is an expensive and time-consuming process for computer vision and natural language scientists. However, a new deep learning approach is being used to decode, localize, and reconstruct image and video captions in seconds, making the machine-generated captions more reliable and trustworthy.

To solve this problem, researchers at the Machine Learning Center at Georgia Tech (ML@GT) and Facebook have created the first cyclical algorithm that can be applied to visual captioning models. The model is able to use the three-step processing during training to make the model more visually-grounded without human annotations or introducing additional computations when deployed, saving researchers time and money on their datasets.

The algorithm employs attention mechanisms, an intuitive concept for humans, when looking at a photo or video. This means that it tries to determine what aspects are important in an image and sequentially create a sentence explaining the visual.

This new model helps solve issues with previous attempts where an algorithm would make its decision based on prior linguistic biases instead of what it is actually “seeing.” This would lead to algorithms having what researchers refer to as object hallucinations. Object hallucinations occur when an algorithmic model assumes an object like a table is in a photo because in previous images, someone with a laptop was always sitting at a table. In this instance, the model is unable to understand a situation where a person has a laptop on their lap instead of a table. This new model helps alleviate the object hallucination problem, thus making the model more reliable and trustworthy.

Chih-Yao MaChih-Yao Ma, a Ph.D. student in the School of Electrical and Computer Engineering, envisions this model being used in situations like describing what happens in the scene as a technology to assist people who are visually impaired to overcome their real daily visual challenges. The model would be a good fit in such instances, because it can alleviate the linguistic bias and object hallucination issues in existing visual captioning models.

This work has been accepted to the European Conference on Computer Vision (ECCV), which takes place virtually August 23-28, 2020.

For more information on ML@GT at ECCV, visit our conference website.

Read the paper in full

Learning to Generate Grounded Visual Captions without Localization Supervision
Chih-Yao Ma, Yannis Kalantidis, Ghassan AlRegib, Peter Vajda, Marcus Rohrbach, Zsolt Kira
Georgia Tech, NAVER LABS Europe, Facebook




Allie McFadden is the communications officer for the Machine Learning Center at Georgia Tech and the Constellations Center for Equity in Computing at Georgia Tech.
Allie McFadden is the communications officer for the Machine Learning Center at Georgia Tech and the Constellations Center for Equity in Computing at Georgia Tech.

Machine Learning Center at Georgia Tech




            AIhub is supported by:



Related posts :



Interview with Frida Hartman: Studying bias in AI-based recruitment tools

  02 Dec 2025
In the next in our series of interviews with ECAI2025 Doctoral Consortium participants, we caught up with Frida, a PhD student at the University of Helsinki.

Forthcoming machine learning and AI seminars: December 2025 edition

  01 Dec 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 1 December 2025 and 31 January 2026.
monthly digest

AIhub monthly digest: November 2025 – learning robust controllers, trust in multi-agent systems, and a new fairness evaluation dataset

  28 Nov 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

EU proposal to delay parts of its AI Act signal a policy shift that prioritises big tech over fairness

  27 Nov 2025
The EC has proposed delaying parts of the act until 2027 following intense pressure from tech companies and the Trump administration.

Better images of AI on book covers

  25 Nov 2025
We share insights from Chrissi Nerantzi on the decisions behind the cover of the open-sourced book ‘Learning with AI’, and reflect on the significance of book covers.

What is AI poisoning? A computer scientist explains

  24 Nov 2025
Poisoning is a growing problem in the world of AI – in particular, for large language models.

New AI technique sounding out audio deepfakes

  21 Nov 2025
Researchers discover a smarter way to detect audio deepfakes that is more accurate and adaptable to keep pace with evolving threats.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence