ΑΙhub.org
 

#NeurIPS2020 invited talks round-up: part two – the real AI revolution, and the future for the invisible workers in AI


by
22 January 2021



share this:
NeurIPS logo

In this post we continue our summaries of the NeurIPS invited talks from the 2020 meeting. Here, we cover the talks by Chris Bishop (Microsoft Research) and Saiph Savage (Carnegie Mellon University).

Chris Bishop: The real AI revolution

Chris began his talk by suggesting that now is a particularly exciting time to be involved in AI. What he termed “the real AI revolution” has nothing to do with artificial general intelligence (AGI), but is driven by the way we create software, and hence new technology. Machine learning is becoming ubiquitous and can be used to solve many problems that cannot, yet, be solved using other methods.

One exciting project that Chris talked about was work carried out in his lab to provide a radical new way of storing data. He and his team are using overlapping holograms, stored within a crystal. The aim is to provide the best of both worlds, combining the cost-effectiveness of traditional hard disk drives with the performance of the more expensive solid state disks. Machine learning, in the form of a convolutional neural network (CNN), is used to obtain data from the images that result when the data stored in the holograms is extracted from the crystal using a reference beam.

Chris also talked about medical diagnosis and the integration of AI systems to assist healthcare professionals. Specifically, he spoke about the field of radiation oncology, where the goal is to use radiation to treat tumours. Large CNNs can be used to mark the boundaries of the tumour on the many image slices of a 3D computerised tomography (CT) scan. The clinicians then check the image segmentation produced by the CNN system and can make any adjustments as needed. The CNN system acts as a tool to speed up the process, rather than replacing the clinician.

To find out more about these projects, and others that Chris is involved in, you can watch the talk here.


Saiph Savage: A future of work for the invisible workers in AI

Saiph’s talks focussed on the “invisible workers” of AI. The AI industry has created new jobs that have been essential to the development and deployment of intelligent systems. These new jobs typically focus on labelling data for machine learning models by, for example, categorising content or transcribing audio. This human labour alongside AI has powered rapid development of, now commonplace, technologies such as voice assistants. However, the workers powering the AI industry are often invisible to consumers.

Saiph presented ideas for how we can design a future of work for empowering the invisible workers behind our AI. She proposed a framework that transforms invisible AI labour, providing opportunities for skills growth, hourly wage increase, and facilitates transitioning to new creative jobs that are unlikely to be automated in the future. She talked about a tool she has developed, called Crowd Coach, where workers share strategies that they have used to enhance their skills and wages. An AI element of the tool helps to pick out the most pertinent pieces of information which can then be shared with other workers. Saiph proposed that web plugins of the tool be integrated into existing labour platforms to guide workers to success.

There was an interesting question and answer session following the presentation which featured an “invisible” AI worker who talked about her experiences working for a number of companies. The tasks she has worked on have included classifying videos, verifying websites, and coding to train robots.

Watch the talk and the Q&A session here.




tags: ,


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



Optimizing LLM test-time compute involves solving a meta-RL problem

  20 Jan 2025
By altering the LLM training objective, we can reuse existing data along with more test-time compute to train models to do better.

Generating a biomedical knowledge graph question answering dataset

  17 Jan 2025
Introducing PrimeKGQA - a scalable approach to dataset generation, harnessing the power of large language models.

The Machine Ethics podcast: 2024 in review with Karin Rudolph and Ben Byford

Karin Rudolph and Ben Byford talk about 2024 touching on the EU AI Act, agent-based AI and advertising, AI search and access to information, conflicting goals of many AI agents, and much more.

Playbook released with guidance on creating images of AI

  15 Jan 2025
Archival Images of AI project enables the creation of meaningful and compelling images of AI.

The Good Robot podcast: Lithium extraction in the Atacama with Sebastián Lehuedé

  13 Jan 2025
Eleanor and Kerry chat to Sebastián Lehuedé about data activism, the effects of lithium extraction, and the importance of reflexive research ethics.

Interview with Erica Kimei: Using ML for studying greenhouse gas emissions from livestock

  10 Jan 2025
Find out about work that brings together agriculture, environmental science, and advanced data analytics.

TELL: Explaining neural networks using logic

  09 Jan 2025
Alessio and colleagues have developed a neural network that can be directly transformed into logic.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association