ΑΙhub.org
 

AI4Industry pilot releases first demonstration video


by
08 February 2021



share this:
AI4industry video capture
Screengrab from the demonstration video produced by AI4Industry

By AI4EU’s AI4Industry pilot team

AI4EU’s pilot AI4Industry released its first video to demonstrate how AI techniques can help develop flexible and transparent manufacturing. The techniques, including semantic technologies, answer set programming, and machine learning, are demonstrated in an experimental plant provided by Evosoft.

The AI4Industry pilot aims to create a tool that assists engineers in production planning, getting insights about potential problems in manufacturing, and estimating the time needed to complete an incoming product request.

The tool consists of 3 main parts: skill matching and explanations, planning, and time prediction. Skill matching represents producibility checking, i.e. checking whether a certain product can be produced by the set of available machines in the factory.

The explanations function provides a list of statements that presents the reasons why a certain product cannot be produced, essentially explaining to humans why production stops. The planning function creates a list of steps that are needed to manufacture a product. Introduced as a small modification to the planning technique, the plan repair program provides explanations to humans of issues in the factory or the production goal.

Finally, how does the planner know how much time production will take? The time prediction component, which based on a machine-learning algorithm, estimates the production time per product. We show the experimental factory of Evosoft producing caps on cans with different colours and the results of these methods in a basic mock-up UI.

The AI4Industry pilot, a collaboration between Siemens AG, TU Wien, and Fraunhofer IAIS, is one of the eight pilots to be carried out during the lifetime of the AI4EU project to provide insights on real scenarios in the selected areas.




AI4EU




            AIhub is supported by:


Related posts :



2024 AAAI / ACM SIGAI Doctoral Consortium interviews compilation

  20 Dec 2024
We collate our interviews with the 2024 cohort of doctoral consortium participants.

Interview with Andrews Ata Kangah: Localising illegal mining sites using machine learning and geospatial data

  19 Dec 2024
We spoke to Andrews to find out more about his research, and attending the AfriClimate AI workshop at the Deep Learning Indaba.

#NeurIPS social media round-up part 2

  18 Dec 2024
We pick out some highlights from the second half of the conference.

The Good Robot podcast: Machine vision with Jill Walker Rettberg

  17 Dec 2024
Eleanor and Kerry talk to Jill about machine vision's origins in polished volcanic glass, whether or not we'll actually have self-driving cars, and a famous photo-shopped image.

Five ways you might already encounter AI in cities (and not realise it)

  13 Dec 2024
Researchers studied how residents and visitors experience the presence of AI in public spaces in the UK.

#NeurIPS2024 social media round-up part 1

  12 Dec 2024
Find out what participants have been getting up to at the Neural Information Processing Systems conference in Vancouver.

Congratulations to the #NeurIPS2024 award winners

  11 Dec 2024
Find out who has been recognised by the conference awards.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association