ΑΙhub.org
 

Detection of marine litter using deep learning


by
07 April 2021



share this:
MARLIT team on a boar
From left to right, the research team of Morgana Vighi, Odei García-Garin and Bertrand Bouchard. Photo credit: Àlex Aguilar (University of Barcelona – IRBio)

Researchers at the University of Barcelona have developed an open access, deep learning-based web app that will enable the detection and quantification of floating plastics in the sea with a reliability of over 80%.

AIhub focus issue on life below water

Floating sea macro-litter is a threat to the conservation of marine ecosystems worldwide. According to UNESCO, plastic debris causes the deaths of more than a million seabirds every year, as well as more than 100,000 marine mammals. Eroded fragments, known as micro-plastics, are now prevalent across the food chain. The largest density of floating litter is found in the great ocean gyres (systems of circular currents) with litter being caught and spun in these vast cycles. However, there is also much polluting waste in coastal waters and semi-closed seas, such as the Mediterranean.

To help understand the extent of the problem, researchers used more than 3,800 aerial images of the Mediterranean coast in Catalonia to train a convolutional neural network (CNN) model to recognise plastic litter. They have produced an application based on the R Shiny package, which you can access here. Using this app, it is possible to classify images individually, as well as to divide them into several segments, and to estimate litter density. The work was published in the journal Environmental Pollution.

The researchers hope that their work will enable progress in the assessment of the presence, density and distribution of plastic pollutants in the seas and oceans worldwide.

Previously, the most common method for assessing the prevalence of marine litter has been direct observations from boats or planes. However, the vast ocean area, and associated amount of data, mean that monitoring studies have been limited.

“Automatic aerial photography techniques combined with analytical algorithms are more efficient protocols for the control and study of this kind of pollutant”, notes Odei Garcia-Garin, first author of the article. “However, automated remote sensing of these materials is at an early stage. There are several factors in the ocean (waves, wind, clouds, etc.) that harden the detection of floating litter automatically with the aerial images of the marine surface. This is why there are only a few studies that made the effort to work on algorithms to apply to this new research context”.

“The great amount of images of the marine surface obtained by drones and planes in monitoring campaigns on marine litter – also in experimental studies with known floating objects – enabled us to develop and test a new algorithm that reaches a 80% of precision in the remote sensing of floating marine macro-litter”.

In their future work, the team plan to adapt the app to further automate the process: this would involve automatic classification of images obtained directly from remote sensors, such as drones.

Find out more

Automatic detection and quantification of floating marine macro-litter in aerial images: Introducing a novel deep learning approach connected to a web application in R
Odei Garcia-Garin, Toni Monleón-Getino, Pere López-Brosa, Asunción Borrell, Alex Aguilar, Ricardo Borja-Robalino, Luis Cardona, Morgana Vighi.

The MARLIT GitHub page can be found here.



tags: ,


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



The Machine Ethics podcast: What excites you about AI? Vol.2

This is a bonus episode looking back over answers to our question: What excites you about AI?

Interview with Janice Anta Zebaze: using AI to address energy supply challenges

  07 Oct 2025
Find out more about research combining renewable energy systems, tribology, and artificial intelligence.

How does AI affect how we learn? A cognitive psychologist explains why you learn when the work is hard

  06 Oct 2025
Early research is only beginning to scratch the surface of how AI technology will truly affect learning and cognition in the long run.

Interview with Zahra Ghorrati: developing frameworks for human activity recognition using wearable sensors

  03 Oct 2025
Find out more about research developing scalable and adaptive deep learning frameworks.

Diffusion beats autoregressive in data-constrained settings

  03 Oct 2025
How can we trade off more compute for less data?

Forthcoming machine learning and AI seminars: October 2025 edition

  02 Oct 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 3 October and 30 November 2025.
monthly digest

AIhub monthly digest: September 2025 – conference reviewing, soccer ball detection, and memory traces

  30 Sep 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Botanical time machines: AI is unlocking a treasure trove of data held in herbarium collections

  29 Sep 2025
New research describes the development and testing of a new AI-driven tool.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence