ΑΙhub.org
 

DeepMind and EMBL release database of predicted protein structures


by
23 July 2021



share this:

AF-Q8I3H7-F1
T-cell immunomodulatory protein homolog, from the AlphaFold Protein Structure Database, reproduced under a CC-BY-4.0 license.

DeepMind and the European Molecular Biology Laboratory (EMBL) have partnered to produce a database of predicted protein structure models.

The first release covers all ~20,000 proteins expressed in the human proteome, and the proteomes of 20 other biologically significant organisms, totalling over 350k structures. In the coming months they plan to expand the database to cover a large proportion of all catalogued proteins (the over 100 million in UniRef90).

The data is freely and openly available to the scientific community. You can access the AlphaFold Protein Structure Database here.

Back in November, DeepMind reported on their AlphaFold system that was able to predict, with high accuracy, a protein’s 3D structure from its amino acid sequence. We wrote about it here. This database is the next step in the journey, and the collaborators hope that this will be a useful tool for researchers and open up new avenues for scientific discovery.


Another example protein structure from the AlphaFold Protein Structure Database, reproduced under a CC-BY-4.0 license. This is Striatin-interacting protein 1. It plays a role in the regulation of cell morphology and cytoskeletal organization, required in the cortical actin filament dynamics and cell shape. AlphaFold produces a per-residue confidence score (pLDDT) between 0 and 100. The parts of the protein with a pLDDT score of above 90 are shown in dark blue, between 70 and 90 in light blue, between 50 and 70 in yellow, and below 50 in red.

In a recently published Nature article, Highly accurate protein structure prediction with AlphaFold, you can find out more about the neural network-based model and methodology that the AlphaFold team used. In this second Nature article, Highly accurate protein structure prediction for the human proteome, published yesterday, you can read more about the application of AlphaFold to the human proteome.

Find out more

AlphaFold Protein Structure Database
DeepMind blog post
EMBL-EBI news article
Highly accurate protein structure prediction with AlphaFold, Nature article.
Highly accurate protein structure prediction for the human proteome, Nature article.
DeepMind open source code
AlphaFold Colab



tags:


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



2024 AAAI / ACM SIGAI Doctoral Consortium interviews compilation

  20 Dec 2024
We collate our interviews with the 2024 cohort of doctoral consortium participants.

Interview with Andrews Ata Kangah: Localising illegal mining sites using machine learning and geospatial data

  19 Dec 2024
We spoke to Andrews to find out more about his research, and attending the AfriClimate AI workshop at the Deep Learning Indaba.

#NeurIPS social media round-up part 2

  18 Dec 2024
We pick out some highlights from the second half of the conference.

The Good Robot podcast: Machine vision with Jill Walker Rettberg

  17 Dec 2024
Eleanor and Kerry talk to Jill about machine vision's origins in polished volcanic glass, whether or not we'll actually have self-driving cars, and a famous photo-shopped image.

Five ways you might already encounter AI in cities (and not realise it)

  13 Dec 2024
Researchers studied how residents and visitors experience the presence of AI in public spaces in the UK.

#NeurIPS2024 social media round-up part 1

  12 Dec 2024
Find out what participants have been getting up to at the Neural Information Processing Systems conference in Vancouver.

Congratulations to the #NeurIPS2024 award winners

  11 Dec 2024
Find out who has been recognised by the conference awards.

Multi-agent path finding in continuous environments

and   11 Dec 2024
How can a group of agents minimise their journey length whilst avoiding collisions?




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association