ΑΙhub.org
 

DeepMind and EMBL release database of predicted protein structures


by
23 July 2021



share this:

AF-Q8I3H7-F1
T-cell immunomodulatory protein homolog, from the AlphaFold Protein Structure Database, reproduced under a CC-BY-4.0 license.

DeepMind and the European Molecular Biology Laboratory (EMBL) have partnered to produce a database of predicted protein structure models.

The first release covers all ~20,000 proteins expressed in the human proteome, and the proteomes of 20 other biologically significant organisms, totalling over 350k structures. In the coming months they plan to expand the database to cover a large proportion of all catalogued proteins (the over 100 million in UniRef90).

The data is freely and openly available to the scientific community. You can access the AlphaFold Protein Structure Database here.

Back in November, DeepMind reported on their AlphaFold system that was able to predict, with high accuracy, a protein’s 3D structure from its amino acid sequence. We wrote about it here. This database is the next step in the journey, and the collaborators hope that this will be a useful tool for researchers and open up new avenues for scientific discovery.


Another example protein structure from the AlphaFold Protein Structure Database, reproduced under a CC-BY-4.0 license. This is Striatin-interacting protein 1. It plays a role in the regulation of cell morphology and cytoskeletal organization, required in the cortical actin filament dynamics and cell shape. AlphaFold produces a per-residue confidence score (pLDDT) between 0 and 100. The parts of the protein with a pLDDT score of above 90 are shown in dark blue, between 70 and 90 in light blue, between 50 and 70 in yellow, and below 50 in red.

In a recently published Nature article, Highly accurate protein structure prediction with AlphaFold, you can find out more about the neural network-based model and methodology that the AlphaFold team used. In this second Nature article, Highly accurate protein structure prediction for the human proteome, published yesterday, you can read more about the application of AlphaFold to the human proteome.

Find out more

AlphaFold Protein Structure Database
DeepMind blog post
EMBL-EBI news article
Highly accurate protein structure prediction with AlphaFold, Nature article.
Highly accurate protein structure prediction for the human proteome, Nature article.
DeepMind open source code
AlphaFold Colab



tags:


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



A deep learning pipeline for controlling protein interactions

  30 Jan 2025
Scientists have used deep learning to design new proteins that bind to complexes involving other small molecules like hormones or drugs.
monthly digest

AIhub monthly digest: January 2025 – artists’ perspectives on GenAI, biomedical knowledge graphs, and ML for studying greenhouse gas emissions

  29 Jan 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Public competition for better images of AI – winners announced!

  28 Jan 2025
See the winning images from the Better Images of AI and Cambridge Diversity Fund competition.

Translating fiction: how AI could assist humans in expanding access to global literature and culture

  27 Jan 2025
Dutch publishing house Veen Bosch & Keuning (VBK) has confirmed plans to experiment using AI to translate fiction.

Interview with Yuki Mitsufuji: Improving AI image generation

  23 Jan 2025
Find out about two pieces of research tackling different aspects of image generation.

The Good Robot podcast: Using feminist chatbots to fight trolls with Sarah Ciston

  22 Jan 2025
Eleanor and Kerry chat to Sarah Ciston about the difficult labor of content moderation, chatbots to combat trolls, and more.

An open-source training framework to advance multimodal AI

  22 Jan 2025
EPFL researchers have developed 4M, a next-generation, framework for training versatile and scalable multimodal foundation models.

Optimizing LLM test-time compute involves solving a meta-RL problem

  20 Jan 2025
By altering the LLM training objective, we can reuse existing data along with more test-time compute to train models to do better.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association