ΑΙhub.org
 

How to avoid hype when promoting your AI research


by
25 October 2021



share this:
microphone in front of a crowd

Hype around AI sets inflated expectations about the technology, drives unnecessary fears and detracts from the meaningful discussions that need to happen now, about the technology actually being developed today.

The AIhub trustees have compiled a handy guide to help you avoid hype when communicating your research. Here are their 10 tips:

1. Be specific about the science and achievements

What problem is your research trying to solve? Provide context.

2. Don’t make exaggerated claims

Try to avoid unnecessary superlatives such as: “general, best, first” unless you can provide supporting context.

3. Be clear about the limitations of your experiments

Did your demonstration require external instruments that made the real world “more digital” (for example, external sensors/motion capture)?

4. Explain how things work

What data was used, what type of algorithms, what hardware? Be upfront about the computational cost.

5. Has your research been validated by the community?

Does the community support your findings, through peer-reviewed research or other means?

6. Make your headline catchy but accurate

Prioritise scientific accuracy.

7. Keep any debates scientific

Don’t bring personalities/personal attacks into the debate.

8. Don’t anthropomorphize

Avoid anthropomorphism unless the subject of the research is people.

9. Use relevant images

Use images from your research to illustrate your news. Avoid generic or stereotypical AI images (such as imaginary robots from science fiction).

10. Be open and transparent

Disclose conflicts of interest and/or funding especially if industry or personal interests are involved.

You can find all of the guidelines in this pdf document.



tags: ,


AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



Interview with Onur Boyar: Drug and material design using generative models and Bayesian optimization

  09 May 2025
Find out how Onur is applying machine learning techniques to bioinformatics-related problems.

2025 AI Index Report

  08 May 2025
Read the latest edition of the AI Index Report which tracks and visualises data related to AI.

Defending against prompt injection with structured queries (StruQ) and preference optimization (SecAlign)

  06 May 2025
Recent advances in LLMs enable exciting LLM-integrated applications. However, as LLMs have improved, so have the attacks against them.

Forthcoming machine learning and AI seminars: May 2025 edition

  05 May 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 5 May and 30 June 2025.

Competition open for images of “digital transformation at work”

Digit and Better Images of AI have teamed up to launch a competition to create more realistic stock images of "digital transformation at work"
monthly digest

AIhub monthly digest: April 2025 – aligning GenAI with technical standards, ML applied to semiconductor manufacturing, and social choice problems

  30 Apr 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence