ΑΙhub.org
 

How to avoid hype when promoting your AI research


by
25 October 2021



share this:
microphone in front of a crowd

Hype around AI sets inflated expectations about the technology, drives unnecessary fears and detracts from the meaningful discussions that need to happen now, about the technology actually being developed today.

The AIhub trustees have compiled a handy guide to help you avoid hype when communicating your research. Here are their 10 tips:

1. Be specific about the science and achievements

What problem is your research trying to solve? Provide context.

2. Don’t make exaggerated claims

Try to avoid unnecessary superlatives such as: “general, best, first” unless you can provide supporting context.

3. Be clear about the limitations of your experiments

Did your demonstration require external instruments that made the real world “more digital” (for example, external sensors/motion capture)?

4. Explain how things work

What data was used, what type of algorithms, what hardware? Be upfront about the computational cost.

5. Has your research been validated by the community?

Does the community support your findings, through peer-reviewed research or other means?

6. Make your headline catchy but accurate

Prioritise scientific accuracy.

7. Keep any debates scientific

Don’t bring personalities/personal attacks into the debate.

8. Don’t anthropomorphize

Avoid anthropomorphism unless the subject of the research is people.

9. Use relevant images

Use images from your research to illustrate your news. Avoid generic or stereotypical AI images (such as imaginary robots from science fiction).

10. Be open and transparent

Disclose conflicts of interest and/or funding especially if industry or personal interests are involved.

You can find all of the guidelines in this pdf document.



tags: ,


AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:



Related posts :



Machine learning for atomic-scale simulations: balancing speed and physical laws

How much underlying physics can we safely “shortcut” without breaking a simulation?

Policy design for two-sided platforms with participation dynamics: Interview with Haruka Kiyohara

  09 Oct 2025
Studying the long-term impacts of decision-making algorithms on two-sided platforms such as e-commerce or music streaming apps.

The Machine Ethics podcast: What excites you about AI? Vol.2

This is a bonus episode looking back over answers to our question: What excites you about AI?

Interview with Janice Anta Zebaze: using AI to address energy supply challenges

  07 Oct 2025
Find out more about research combining renewable energy systems, tribology, and artificial intelligence.

How does AI affect how we learn? A cognitive psychologist explains why you learn when the work is hard

  06 Oct 2025
Early research is only beginning to scratch the surface of how AI technology will truly affect learning and cognition in the long run.

Interview with Zahra Ghorrati: developing frameworks for human activity recognition using wearable sensors

  03 Oct 2025
Find out more about research developing scalable and adaptive deep learning frameworks.

Diffusion beats autoregressive in data-constrained settings

  03 Oct 2025
How can we trade off more compute for less data?

Forthcoming machine learning and AI seminars: October 2025 edition

  02 Oct 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 3 October and 30 November 2025.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence