ΑΙhub.org
 

Bug bounties for algorithmic harms? – a report from the Algorithmic Justice League


by
09 February 2022



share this:

bug bountiesImage from the report “Bug bounties for algorithmic harms?” Credit: AJL.

Researchers from the Algorithmic Justice League (AJL) have released a report which takes a detailed look at bug bounty programmes (BBPs) and how these could be used to address various kinds of socio-technical problems, including algorithmic harm.

BBPs are mechanisms that incentivize hackers to identify and report cybersecurity vulnerabilities. Hundreds of companies and organizations regularly use BBPs to buy security flaws from hackers. Now, BBPs have been adopted to address a wider spectrum of socio-technical harms and risks beyond security bugs.

However, as report authors Josh Kenway, Camille François, Sasha Costanza-Chock, Inioluwa Deborah Raji, and Joy Buolamwini note, the conditions under which BBPs might constitute appropriate mechanisms for addressing socio-technical concerns remain relatively unexamined.

To compile their report the authors held interviews with BBP experts and practitioners, they reviewed the existing literature, and they analysed historical and present-day approaches to vulnerability disclosure. There were three main lines of enquiry for the team. They considered how BBPs might be used to:

  • Foster and nurture participation and community among researchers
  • Shape field development by fostering the development of resources and methods
  • Drive transparency and accountability across the industry

The five key takeaways from the report are as follows:

  1. Prepare to include socio-technical concerns. Only a few companies/organisations have expanded their current programs to include socio-technical issues, and no clear best-practices have emerged. The report provides recommendations for how to shape BBPs for algorithmic harm discovery and mitigation.
  2. Look across the lifecycle. Bug bounties are just one tool for enhancing cybersecurity. Likewise, BBPs for algorithmic harm will need to be accompanied by other mechanisms in order to assess and act on reports of such harms.
  3. Nurture the community of practice. There is a sense of community within bug bounty platforms with organisations and members sharing educational materials, resources and tools. The authors caution against approaches that exclude those from fields outside of computer science
  4. Intentionally develop a diverse, inclusive community. Successfully deploying BBPs for algorithmic harms will require serious effort to recruit and retain diverse communities of researchers and community advocates, and to ensure fair compensation for work.
  5. Foster and protect participatory, adversarial research, and guarantee some form of public disclosure. Greater protection for third-party algorithmic harms research is needed.

You can find the full pdf version of the report here. This includes more background information, findings and recommendations pertaining to the five key takeaways, interviews with experts, and a case study of Twitter’s recent bias bounty pilot.

Report citation

Kenway, Josh, Camille François, Sasha Costanza-Chock, Inioluwa Deborah Raji, and Joy Buolamwini. Bug Bounties For Algorithmic Harms? Lessons from Cybersecurity Vulnerability Disclosure for Algorithmic Harms Discovery, Disclosure, and Redress. Washington, DC: Algorithmic Justice League. January 2022. Available at https://ajl.org/bugs.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



Interview with Nisarg Shah: Understanding fairness in AI and machine learning

  05 Feb 2025
Hear from the winner of the 2024 IJCAI Computers and Thought Award.

Stuart J. Russell wins 2025 AAAI Award for Artificial Intelligence for the Benefit of Humanity

  04 Feb 2025
Stuart will give an invited talk about his work at AAAI 2025.

Forthcoming machine learning and AI seminars: February 2025 edition

  03 Feb 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 3 February and 31 March 2025.

Hanna Barakat’s image collection & the paradoxes of depicting diversity in AI history

  31 Jan 2025
Read about Hanna's artistic process and reflections upon creating new images about AI

A deep learning pipeline for controlling protein interactions

  30 Jan 2025
Scientists have used deep learning to design new proteins that bind to complexes involving other small molecules like hormones or drugs.
monthly digest

AIhub monthly digest: January 2025 – artists’ perspectives on GenAI, biomedical knowledge graphs, and ML for studying greenhouse gas emissions

  29 Jan 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Public competition for better images of AI – winners announced!

  28 Jan 2025
See the winning images from the Better Images of AI and Cambridge Diversity Fund competition.

Translating fiction: how AI could assist humans in expanding access to global literature and culture

  27 Jan 2025
Dutch publishing house Veen Bosch & Keuning (VBK) has confirmed plans to experiment using AI to translate fiction.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association