ΑΙhub.org
 

#ICLR2022 invited talk round-up 1: AI for science – protein structure prediction


by
29 April 2022



share this:

Probable disease resistance protein At1g58602Probable disease resistance protein At1g58602, from the AlphaFold Protein Structure Database, reproduced under a CC-BY-4.0 license.

This year’s International Conference on Learning Representations (ICLR) boasted eight invited talks on topics ranging from reinforcement learning to connectomics, from societal considerations to interpretability. In this article, we summarise the talk given by Pushmeet Kohli.

Leveraging AI for science

Pushmeet Kohli, DeepMind

Around five years ago, the DeepMind team started a science programme with the aim of using AI to pursue breakthroughs in impactful science challenges. In his talk, Pushmeet talked a bit about their approach, and focussed on the case study of AlphaFold2, which made a huge advance in the field of protein structure prediction.

Science offers many challenges and opportunities for AI. Through a variety of different experiments, such as high energy physics and genomics, there is a vast amount of data being produced. Many experiments are extremely complex and require a high-level of control. When it comes to scientific models, there is generally a high level of complexity and sophistication, a good example being in weather prediction. These are aspects (data, control, complexity) in which AI could play a key role in helping to advance different scientific disciplines.

Pushmeet highlighted three important elements of science, which also need to be considered when producing AI models. These are: generalisation (theories ideally hold universally), uncertainty prediction (we need to know how confident can we be about trusting a model), and explanability/interpretability.

Case study: Protein structure prediction with AlphaFold2
Proteins are large, complex molecules, and the shape of a particular protein is closely linked to the function it performs. The ability to accurately predict protein structures would enable scientists to gain a greater understanding of how they work and what they do. This close link between structure and function has been a key driver behind the problem of protein structure prediction.

It is extremely difficult and time-consuming to determine a protein structure experimentally. Typically this could take a researcher a year or more, just for one structure. By having an accurate prediction, this process could be greatly accelerated.

protein structure predictionScreenshot from Pushmeet’s talk.

In 1994, the community-wide experiment for protein structure prediction, Critical Assessment of protein Structure Prediction (CASP), held its first biannual competition. CASP provides an independent mechanism for the assessment of methods of protein structure modelling and teams of researchers take part to see who can provide the most accurate predictions. In the 2020 experiment, AlphaFold2 achieved a significant jump in performance as compared to previous years.

The AlphaFold2 architecture takes in an amino acid sequence, performs a genetic database search to find known structure of related proteins, and completes multiple sequence alignments. Sequence alignment is a way of arranging the sequences of proteins to identify regions of similarity. It then takes all of this information and feeds it to a neural network (with a transformer-type architecture) which works with a pair representation (considering the relationships between all the pairs of animo acids) and a multiple sequence alignment (MSA) representation. Finally, there is a structure module which outputs the final structure. You can read more about the method in the team’s 2021 paper: Highly accurate protein structure prediction for the human proteome. Another important facet of AlphaFold2 is that it does not only make structure predictions, it also predicts how much uncertainty/confidence there is for a particular prediction.

Pushmeet stressed that what enabled this work was the large collection of past data and research knowledge from years of previous study on protein structure, principally by the experimental biology community. He noted that resources such as the protein data bank, and the founding of CASP have been critical for the development of protein structure prediction methods.

To close his talk, Pushmeet briefly mentioned a number of other science problems that the team are working on. These include magnetic confinement control of plasmas for fusion, functional genomics, AI for mathematics and quantum chemistry.



tags:


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



Congratulations to the #IJCAI2025 distinguished paper award winners

  20 Aug 2025
Find out who has won the prestigious awards at the International Joint Conference on Artificial Intelligence.

#IJCAI2025 social media round-up: part one

  19 Aug 2025
Find out what participants have been getting up to during the first few days of IJCAI 2025.

Forthcoming machine learning and AI seminars: August 2025 edition

  19 Aug 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 19 August and 30 September 2025.
coffee corner

AIhub coffee corner: Agentic AI

  15 Aug 2025
The AIhub coffee corner captures the musings of AI experts over a short conversation.

New research could block AI models learning from your online content

  14 Aug 2025
The method protects images from being used to train AI or create deepfakes by adding invisible changes that confuse the technology.

What’s coming up at #IJCAI2025?

  13 Aug 2025
Find out what's on the programme at the forthcoming International Joint Conference on Artificial Intelligence.

Interview with Flávia Carvalhido: Responsible multimodal AI

  12 Aug 2025
We hear from PhD student Flávia about her research, what inspired her to study AI, and her experience at AAAI 2025.

Using AI to speed up landslide detection

  11 Aug 2025
Researchers are using AI to speed up landslide detection following major earthquakes and extreme rainfall events.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence