ΑΙhub.org
 

#ICLR2022 invited talk round-up 1: AI for science – protein structure prediction


by
29 April 2022



share this:

Probable disease resistance protein At1g58602Probable disease resistance protein At1g58602, from the AlphaFold Protein Structure Database, reproduced under a CC-BY-4.0 license.

This year’s International Conference on Learning Representations (ICLR) boasted eight invited talks on topics ranging from reinforcement learning to connectomics, from societal considerations to interpretability. In this article, we summarise the talk given by Pushmeet Kohli.

Leveraging AI for science

Pushmeet Kohli, DeepMind

Around five years ago, the DeepMind team started a science programme with the aim of using AI to pursue breakthroughs in impactful science challenges. In his talk, Pushmeet talked a bit about their approach, and focussed on the case study of AlphaFold2, which made a huge advance in the field of protein structure prediction.

Science offers many challenges and opportunities for AI. Through a variety of different experiments, such as high energy physics and genomics, there is a vast amount of data being produced. Many experiments are extremely complex and require a high-level of control. When it comes to scientific models, there is generally a high level of complexity and sophistication, a good example being in weather prediction. These are aspects (data, control, complexity) in which AI could play a key role in helping to advance different scientific disciplines.

Pushmeet highlighted three important elements of science, which also need to be considered when producing AI models. These are: generalisation (theories ideally hold universally), uncertainty prediction (we need to know how confident can we be about trusting a model), and explanability/interpretability.

Case study: Protein structure prediction with AlphaFold2
Proteins are large, complex molecules, and the shape of a particular protein is closely linked to the function it performs. The ability to accurately predict protein structures would enable scientists to gain a greater understanding of how they work and what they do. This close link between structure and function has been a key driver behind the problem of protein structure prediction.

It is extremely difficult and time-consuming to determine a protein structure experimentally. Typically this could take a researcher a year or more, just for one structure. By having an accurate prediction, this process could be greatly accelerated.

protein structure predictionScreenshot from Pushmeet’s talk.

In 1994, the community-wide experiment for protein structure prediction, Critical Assessment of protein Structure Prediction (CASP), held its first biannual competition. CASP provides an independent mechanism for the assessment of methods of protein structure modelling and teams of researchers take part to see who can provide the most accurate predictions. In the 2020 experiment, AlphaFold2 achieved a significant jump in performance as compared to previous years.

The AlphaFold2 architecture takes in an amino acid sequence, performs a genetic database search to find known structure of related proteins, and completes multiple sequence alignments. Sequence alignment is a way of arranging the sequences of proteins to identify regions of similarity. It then takes all of this information and feeds it to a neural network (with a transformer-type architecture) which works with a pair representation (considering the relationships between all the pairs of animo acids) and a multiple sequence alignment (MSA) representation. Finally, there is a structure module which outputs the final structure. You can read more about the method in the team’s 2021 paper: Highly accurate protein structure prediction for the human proteome. Another important facet of AlphaFold2 is that it does not only make structure predictions, it also predicts how much uncertainty/confidence there is for a particular prediction.

Pushmeet stressed that what enabled this work was the large collection of past data and research knowledge from years of previous study on protein structure, principally by the experimental biology community. He noted that resources such as the protein data bank, and the founding of CASP have been critical for the development of protein structure prediction methods.

To close his talk, Pushmeet briefly mentioned a number of other science problems that the team are working on. These include magnetic confinement control of plasmas for fusion, functional genomics, AI for mathematics and quantum chemistry.



tags:


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



What are small language models and how do they differ from large ones?

  06 Jan 2026
Let’s explore what makes SLMs and LLMs different – and how to choose the right one for your situation.

Forthcoming machine learning and AI seminars: January 2026 edition

  05 Jan 2026
A list of free-to-attend AI-related seminars that are scheduled to take place between 5 January and 28 February 2026.

AAAI presidential panel – AI perception versus reality video discussion

  02 Jan 2026
Watch the second panel discussion in this series from AAAI.

More than half of new articles on the internet are being written by AI

  31 Dec 2025
The line between human and machine authorship is blurring, particularly as it’s become increasingly difficult to tell whether something was written by a person or AI.
monthly digest

2025 digest of digests

  30 Dec 2025
We look back through the archives of our monthly digests to pick out some highlights from the year.
monthly digest

AIhub monthly digest: December 2025 – studying bias in AI-based recruitment tools, an image dataset for ethical AI benchmarking, and end of year com

  29 Dec 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Half of UK novelists believe AI is likely to replace their work entirely

  24 Dec 2025
A new report asks literary creatives about their views on generative AI tools and LLM-authored books.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence