ΑΙhub.org
 

#ICML2022 Test of Time award announced


by
20 July 2022



share this:
winners' medal

The International Conference on Machine Learning (ICML) Test of Time award is given to a paper from ICML ten years ago that has had significant impact. This year the award goes to:

Poisoning Attacks against Support Vector Machines
Battista Biggio, Blaine Nelson and Pavel Laskov

The paper investigates adversarial machine learning and, specifically, poisoning attacks on support vector machines (SVMs). The awards committee noted that this paper is one of the earliest and most impactful papers on the theme of poisoning attacks, which are now widely studied by the community. The authors use a gradient ascent strategy in which the gradient is computed based on properties of the SVM’s optimal solution. The method can be kernelized, thereby not needing explicit feature representation. The committee judged that this paper initiated thorough investigation of the problem and inspired significant subsequent work.

The abstract of the paper:
We investigate a family of poisoning attacks against Support Vector Machines (SVM). Such attacks inject specially crafted training data that increases the SVM’s test error. Central to the motivation for these attacks is the fact that most learning algorithms assume that their training data comes from a natural or well-behaved distribution. However, this assumption does not generally hold in security-sensitive settings. As we demonstrate, an intelligent adversary can, to some extent, predict the change of the SVM’s decision function due to malicious input and use this ability to construct malicious data. The proposed attack uses a gradient ascent strategy in which the gradient is computed based on properties of the SVM’s optimal solution. This method can be kernelized and enables the attack to be constructed in the input space even for non-linear kernels. We experimentally demonstrate that our gradient ascent procedure reliably identifies good local maxima of the non-convex validation error surface, which significantly increases the classifier’s test error.

You can read the paper in full here.

In a special award session, first author Battista Biggio gave a plenary talk describing the research, and subsequent developments. In the early days of this research field (around 2006-2010) work on poisoning attacks focussed on simple models and concerned security-related applications, such as spam filtering and network intrusion detection. The challenge that the authors set themselves with this work was to find out if these attacks were possible against a more complex classifier, and something closer to the state-of-the-art. They decided to study SVMs because they were theoretically grounded and quite popular at the time. Their strategy was to find an optimal attack point (to inject the “poisoned” samples) that maximised the classification error.

Battista also spoke about some of the work that has followed in this space, including adversarial examples for deep neural networks, machine learning security, and different types of attacks against machine learning models.

You can watch Battista’s original talk on this paper, at ICML 2012.

There were also two Test of Time honourable mentions:

  • Building high-level features using large scale unsupervised learning
    Quoc Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg Corrado, Jeff Dean, Andrew Ng
    Read the paper here.
  • On causal and anticausal learning
    Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, Joris Mooij
    Read the paper here.


tags: ,


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



What’s coming up at #ICRA2025?

  16 May 2025
Find out what's in store at the IEEE International Conference on Robotics & Automation, which will take place from 19-23 May.

AI Song Contest returns for 2025

  15 May 2025
This year's competition will culminate in a live award show in November.

Robot see, robot do: System learns after watching how-tos

  14 May 2025
Researchers have developed a new robotic framework that allows robots to learn tasks by watching a how-to video

Interview with Ananya Joshi: Real-time monitoring for healthcare data

  13 May 2025
Find out how Ananya worked with domain experts to develop a system to identify respiratory outbreaks.

AI-powered robots help tackle Europe’s growing e-waste problem

  12 May 2025
EU-funded researchers have developed adaptable robots that could transform the way we recycle electronic waste, benefiting both the environment and the economy.

Interview with Onur Boyar: Drug and material design using generative models and Bayesian optimization

  09 May 2025
Find out how Onur is applying machine learning techniques to bioinformatics-related problems.

2025 AI Index Report

  08 May 2025
Read the latest edition of the AI Index Report which tracks and visualises data related to AI.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence