ΑΙhub.org
 

Congratulations to the authors of the #IJCAI2022 distinguished papers


by
28 July 2022



share this:
IJCAI-ECAI 2022 logo

The IJCAI distinguished paper awards recognise some of the best papers presented at the conference each year. This year, three articles were named as distinguished papers. The winners were selected by the associate programme committee chairs, the programme and general chairs, and the president of EurAI.

And the winners are…

Plurality veto: A simple voting rule achieving optimal metric distortion
Fatih Kizilkaya, David Kempe

Abstract:
The metric distortion framework posits that n voters and m candidates are jointly embedded in a metric space such that voters rank candidates that are closer to them higher. A voting rule’s purpose is to pick a candidate with minimum total distance to the voters, given only the rankings, but not the actual distances. As a result, in the worst case, each deterministic rule picks a candidate whose total distance is at least three times larger than that of an optimal one, i.e., has distortion at least 3. A recent breakthrough result showed that achieving this bound of 3 is possible; however, the proof is non-constructive, and the voting rule itself is a complicated exhaustive search. Our main result is an extremely simple voting rule, called Plurality Veto, which achieves the same optimal distortion of 3. Each candidate starts with a score equal to his number of first-place votes. These scores are then gradually decreased via an n-round veto process in which a candidate drops out when his score reaches zero. One after the other, voters decrement the score of their bottom choice among the standing candidates, and the last standing candidate wins. We give a one-paragraph proof that this voting rule achieves distortion 3. This rule is also immensely practical, and it only makes two queries to each voter, so it has low communication overhead. We also show that a straightforward extension can be used to give a constructive proof of the more general Ranking-Matching Lemma of Gkatzelis et al. We also generalize Plurality Veto into a class of randomized voting rules in the following way: Plurality Veto is run only for k < n rounds; then, a candidate is chosen with probability proportional to his residual score. This general rule interpolates between Random Dictatorship (for k = 0) and Plurality Veto (for k = n – 1), and k controls the variance of the output. We show that for all k, this rule has expected distortion at most 3.

Read the paper in full here.


QCDCL with cube learning or pure literal elimination – what is best?
Benjamin Böhm, Tomas Peitl, Olaf Beyersdorff

Abstract:
Quantified conflict-driven clause learning (QCDCL) is one of the main approaches for solving quantified Boolean formulas (QBF). We formalise and investigate several versions of QCDCL that include cube learning and/or pure-literal elimination, and formally compare the resulting solving models via proof complexity techniques. Our results show that almost all of the QCDCL models are exponentially incomparable with respect to proof size (and hence solver running time), pointing towards different orthogonal ways how to practically implement QCDCL.

Read the paper in full here.


Completeness and diversity in depth-first proof-number search with applications to retrosynthesis
Christopher Franz, Georg Mogk, Thomas Mrziglod, Kevin Schewior

Abstract:
We revisit Depth-First Proof-Number Search (DFPN), a well-known algorithm for solving two-player games. First, we consider the completeness property of the algorithm and its variants, i.e., whether they always find a winning strategy when there exists one. While it is known that the standard version is not complete, we show that the combination with the simple Threshold Controlling Algorithm is complete, solving an open problem from the area. Second, we modify DFPN to compute a diverse set of solutions rather than just a single one. Finally, we apply this new variant in Chemistry to the synthesis planning of new target molecules (Retrosynthesis). In this domain a diverse set of many solutions is desirable. We apply additional modifications from the literature to the algorithm and show that it outperforms Monte-Carlo Tree-Search, another well-known algorithm for the same problem, according to a natural diversity measure.

Read the paper in full here.




tags: ,


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



monthly digest

AIhub monthly digest: May 2025 – materials design, object state classification, and real-time monitoring for healthcare data

  30 May 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

The Good Robot podcast: Transhumanist fantasies with Alexander Thomas

  28 May 2025
In this episode, Eleanor talks to Alexander Thomas, a filmmaker and academic, about the transhumanist narrative.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Interview with Gillian Hadfield: Normative infrastructure for AI alignment

  22 May 2025
Kumar Kshitij Patel spoke to Gillian Hadfield about her interdisciplinary research, career trajectory, path into AI alignment, law, and general thoughts on AI systems.

PitcherNet helps researchers throw strikes with AI analysis

  21 May 2025
Baltimore Orioles tasks Waterloo Engineering researchers to develop AI tech that can monitor pitchers using low-resolution video captured by smartphones

Interview with Filippos Gouidis: Object state classification

  20 May 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence