ΑΙhub.org
 

GRACE Podcast: Dr Harriett Jernigan interviews Dr Nakeema Stefflbauer


by
06 September 2022



share this:
Grace podcast

GRACE: Global Review of AI Community Ethics is a new student-run, peer-reviewed, open-access, international journal. To accompany the journal, there is a podcast hosted by Dr Harriett Jernigan.

In this second episode, Harriett interviews Dr Nakeema Stefflbauer. Listen below:

Dr Nakeema Stefflbauer is a tech product leader, operator, founder and venture partner with a focus on scalable impact tech and AI-driven businesses that solve real environmental, social and governance problems. She holds MA and PhD degrees from Harvard University, a BA from Brown University, and an executive MBA from the disruptive Quantic School of Business and Technology.

Dr Harriett Jernigan is a lecturer at Stanford University. She earned her BA in German and Creative Writing at the University of Alabama and her PhD in German Studies at Stanford University. She specializes in writing across the disciplines; second-language acquisition; project-based instruction; social geography; and German languages, literatures and cultures.




GRACE




            AIhub is supported by:



Related posts :



Machine learning for atomic-scale simulations: balancing speed and physical laws

How much underlying physics can we safely “shortcut” without breaking a simulation?

Policy design for two-sided platforms with participation dynamics: Interview with Haruka Kiyohara

  09 Oct 2025
Studying the long-term impacts of decision-making algorithms on two-sided platforms such as e-commerce or music streaming apps.

The Machine Ethics podcast: What excites you about AI? Vol.2

This is a bonus episode looking back over answers to our question: What excites you about AI?

Interview with Janice Anta Zebaze: using AI to address energy supply challenges

  07 Oct 2025
Find out more about research combining renewable energy systems, tribology, and artificial intelligence.

How does AI affect how we learn? A cognitive psychologist explains why you learn when the work is hard

  06 Oct 2025
Early research is only beginning to scratch the surface of how AI technology will truly affect learning and cognition in the long run.

Interview with Zahra Ghorrati: developing frameworks for human activity recognition using wearable sensors

  03 Oct 2025
Find out more about research developing scalable and adaptive deep learning frameworks.

Diffusion beats autoregressive in data-constrained settings

  03 Oct 2025
How can we trade off more compute for less data?

Forthcoming machine learning and AI seminars: October 2025 edition

  02 Oct 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 3 October and 30 November 2025.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence