ΑΙhub.org
 

Radical AI podcast: featuring Rebecca Finlay


by
07 October 2022



share this:
Rebecca Finlay

Hosted by Dylan Doyle-Burke and Jessie J Smith, Radical AI is a podcast featuring the voices of the future in the field of artificial intelligence ethics. In this episode Jess and Dylan chat to Rebecca Finlay about data privacy and women’s rights.

Data privacy and women’s rights

What is the reality of data privacy after the overruling of Roe v. Wade?

In this episode, we interview Rebecca Finlay about protecting user data privacy and human rights, following the US Supreme Court ruling of Dobbs v. Jackson Women’s Health Organization.

Rebecca Finlay is the CEO of the non-profit Partnership on AI, overseeing the organization’s mission and strategy. In this role, Rebecca ensures that the Partnership on AI and their global community of partners work together so that developments in AI advance positive outcomes for people and society.

You can find the resources related to this episode here.

Follow Rebecca on Twitter @RFinlayPAI.

Follow Partnership on AI on Twitter @PartnershipAI.

If you enjoyed this episode please make sure to subscribe, submit a rating and review, and connect with us on twitter at @radicalaipod.

Listen to the episode below:

About Radical AI:

Hosted by Dylan Doyle-Burke, a PhD student at the University of Denver, and Jessie J Smith, a PhD student at the University of Colorado Boulder, Radical AI is a podcast featuring the voices of the future in the field of Artificial Intelligence Ethics.

Radical AI lifts up people, ideas, and stories that represent the cutting edge in AI, philosophy, and machine learning. In a world where platforms far too often feature the status quo and the usual suspects, Radical AI is a breath of fresh air whose mission is “To create an engaging, professional, educational and accessible platform centering marginalized or otherwise radical voices in industry and the academy for dialogue, collaboration, and debate to co-create the field of Artificial Intelligence Ethics.”

Through interviews with rising stars and experts in the field we boldly engage with the topics that are transforming our world like bias, discrimination, identity, accessibility, privacy, and issues of morality.

To find more information regarding the project, including podcast episode transcripts and show notes, please visit Radical AI.




The Radical AI Podcast




            AIhub is supported by:


Related posts :



monthly digest

AIhub monthly digest: January 2025 – artists’ perspectives on generative AI, biomedical knowledge graphs, and ML for studying greenhouse gas e

  29 Jan 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Public competition for better images of AI – winners announced!

  28 Jan 2025
See the winning images from the Better Images of AI and Cambridge Diversity Fund competition.

Translating fiction: how AI could assist humans in expanding access to global literature and culture

  27 Jan 2025
Dutch publishing house Veen Bosch & Keuning (VBK) has confirmed plans to experiment using AI to translate fiction.

Interview with Yuki Mitsufuji: Improving AI image generation

  23 Jan 2025
Find out about two pieces of research tackling different aspects of image generation.

The Good Robot podcast: Using feminist chatbots to fight trolls with Sarah Ciston

  22 Jan 2025
Eleanor and Kerry chat to Sarah Ciston about the difficult labor of content moderation, chatbots to combat trolls, and more.

An open-source training framework to advance multimodal AI

  22 Jan 2025
EPFL researchers have developed 4M, a next-generation, framework for training versatile and scalable multimodal foundation models.

Optimizing LLM test-time compute involves solving a meta-RL problem

  20 Jan 2025
By altering the LLM training objective, we can reuse existing data along with more test-time compute to train models to do better.

Generating a biomedical knowledge graph question answering dataset

  17 Jan 2025
Introducing PrimeKGQA - a scalable approach to dataset generation, harnessing the power of large language models.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association