ΑΙhub.org
 

AI transparency in practice: a report


by
22 March 2023



share this:

Abstract microscopic photography of a Graphics Processing Unit resembling a satellite image of a big cityFritzchens Fritz / Better Images of AI / GPU shot etched 5 / Licenced by CC-BY 4.0

A report, co-authored by Ramak Molavi Vasse’i (Mozilla’s Insights Team) and Jesse McCrosky (Thoughtworks), investigates the issue of AI transparency. The pair dig into what AI transparency actually means, and aim to provide useful and actionable information for specific stakeholders. The report also details a survey of current approaches, assesses their limitations, and outlines how meaningful transparency might be achieved.

The authors have highlighted the following key findings from their report:

  • The focus of builders is primarily on system accuracy and debugging, rather than helping end users and impacted people understand algorithmic decisions.
  • AI transparency is rarely prioritized by the leadership of respondents’ organizations, partly due to a lack of pressure to comply with the legislation.
  • While there is active research around AI explainability (XAI) tools, there are fewer examples of effective deployment and use of such tools, and little confidence in their effectiveness.
  • Apart from information on data bias, there is little work on sharing information on system design, metrics, or wider impacts on individuals and society. Builders generally do not employ criteria established for social and environmental transparency, nor do they consider unintended consequences.
  • Providing appropriate explanations to various stakeholders poses a challenge for developers. There is a noticeable discrepancy between the information survey respondents currently provide and the information they would find useful and recommend.

Topics covered in the report include:

  • Meaningful AI transparency
  • Transparency stakeholders and their needs
  • Motivations and priorities of builders around AI transparency
  • Transparency tools and methods
  • Awareness of social and ecological impact
  • Transparency delivery – practices and recommendations
  • Ranking challenges for greater AI transparency

You can read the report in full here. A PDF version is here.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



monthly digest

AIhub monthly digest: August 2025 – causality and generative modelling, responsible multimodal AI, and IJCAI in Montréal and Guangzhou

  29 Aug 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Interview with Benyamin Tabarsi: Computing education and generative AI

  28 Aug 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

The value of prediction in identifying the worst-off: Interview with Unai Fischer Abaigar

  27 Aug 2025
We hear from the winner of an outstanding paper award at ICML2025.

#IJCAI2025 social media round-up: part two

  26 Aug 2025
Find out what the participants got up to during the main part of the conference.

AI helps chemists develop tougher plastics

  25 Aug 2025
Researchers created polymers that are more resistant to tearing by incorporating stress-responsive molecules identified by a machine learning model.

RoboCup@Work League: Interview with Christoph Steup

  22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

  21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.

Congratulations to the #IJCAI2025 distinguished paper award winners

  20 Aug 2025
Find out who has won the prestigious awards at the International Joint Conference on Artificial Intelligence.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence