ΑΙhub.org
 

AI transparency in practice: a report


by
22 March 2023



share this:

Abstract microscopic photography of a Graphics Processing Unit resembling a satellite image of a big cityFritzchens Fritz / Better Images of AI / GPU shot etched 5 / Licenced by CC-BY 4.0

A report, co-authored by Ramak Molavi Vasse’i (Mozilla’s Insights Team) and Jesse McCrosky (Thoughtworks), investigates the issue of AI transparency. The pair dig into what AI transparency actually means, and aim to provide useful and actionable information for specific stakeholders. The report also details a survey of current approaches, assesses their limitations, and outlines how meaningful transparency might be achieved.

The authors have highlighted the following key findings from their report:

  • The focus of builders is primarily on system accuracy and debugging, rather than helping end users and impacted people understand algorithmic decisions.
  • AI transparency is rarely prioritized by the leadership of respondents’ organizations, partly due to a lack of pressure to comply with the legislation.
  • While there is active research around AI explainability (XAI) tools, there are fewer examples of effective deployment and use of such tools, and little confidence in their effectiveness.
  • Apart from information on data bias, there is little work on sharing information on system design, metrics, or wider impacts on individuals and society. Builders generally do not employ criteria established for social and environmental transparency, nor do they consider unintended consequences.
  • Providing appropriate explanations to various stakeholders poses a challenge for developers. There is a noticeable discrepancy between the information survey respondents currently provide and the information they would find useful and recommend.

Topics covered in the report include:

  • Meaningful AI transparency
  • Transparency stakeholders and their needs
  • Motivations and priorities of builders around AI transparency
  • Transparency tools and methods
  • Awareness of social and ecological impact
  • Transparency delivery – practices and recommendations
  • Ranking challenges for greater AI transparency

You can read the report in full here. A PDF version is here.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



The Machine Ethics podcast: AI Ethics, Risks and Safety Conference 2025

Listen to a special episode recorded at the AI Ethics, Risks and Safety Conference.

Interview with Aneesh Komanduri: Causality and generative modeling

  31 Jul 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.
monthly digest

AIhub monthly digest: July 2025 – RoboCup round-up, ICML in Vancouver, and leveraging feedback in human-robot interactions

  30 Jul 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Interview with Yuki Mitsufuji: Text-to-sound generation

  29 Jul 2025
We hear from Sony AI Lead Research Scientist Yuki Mitsufuji to find out more about his latest research.

Open-source Swiss language model to be released this summer

  29 Jul 2025
This summer, EPFL and ETH Zurich will release a large language model (LLM) developed on public infrastructure.

Interview with Kate Candon: Leveraging explicit and implicit feedback in human-robot interactions

  25 Jul 2025
Hear from PhD student Kate about her work on human-robot interactions.

#RoboCup2025: social media round-up part 2

  24 Jul 2025
Find out what participants got up to during the second half of RoboCup2025 in Salvador, Brazil.

Visualising the digital transformation of work

Does it matter that the existing images of AI and digital technologies are so unrealistic?



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence