ΑΙhub.org
 

Radical AI podcast: featuring Meredith Broussard


by
27 March 2023



share this:
Meredith Broussard

Hosted by Dylan Doyle-Burke and Jessie J Smith, Radical AI is a podcast featuring the voices of the future in the field of artificial intelligence ethics. In this episode, Dylan and Jess discuss Meredith Broussard’s influential new book, More than a Glitch: Confronting Race, Gender, and Ability Bias in Tech.

Listen to the episode below:


More than a Glitch, Technochauvanism, and Algorithmic Accountability

In this episode, we discuss Meredith Broussards influential new book, “More than a Glitch: Confronting Race, Gender, and Ability Bias in Tech” – published by MIT Press.

Meredith is a data journalist, an associate professor at the Arthur L. Carter Journalism Institute of New York University, a research director at the NYU Alliance for Public Interest Technology, and the author of several books, including “More Than a Glitch” (which we cover in this episode) and “Artificial Unintelligence: How Computers Misunderstand the World.” Her academic research focuses on artificial intelligence in investigative reporting and ethical AI, with a particular interest in using data analysis for social good.

Follow Meredith on Twitter @merbroussard.

If you enjoyed this episode please make sure to subscribe, submit a rating and review, and connect with us on twitter at @radicalaipod.

You can find the show notes for this episode here.

About Radical AI:

Hosted by Dylan Doyle-Burke, a PhD student at the University of Denver, and Jessie J Smith, a PhD student at the University of Colorado Boulder, Radical AI is a podcast featuring the voices of the future in the field of Artificial Intelligence Ethics.

Radical AI lifts up people, ideas, and stories that represent the cutting edge in AI, philosophy, and machine learning. In a world where platforms far too often feature the status quo and the usual suspects, Radical AI is a breath of fresh air whose mission is “To create an engaging, professional, educational and accessible platform centering marginalized or otherwise radical voices in industry and the academy for dialogue, collaboration, and debate to co-create the field of Artificial Intelligence Ethics.”

Through interviews with rising stars and experts in the field we boldly engage with the topics that are transforming our world like bias, discrimination, identity, accessibility, privacy, and issues of morality.

To find more information regarding the project, including podcast episode transcripts and show notes, please visit Radical AI.




The Radical AI Podcast




            AIhub is supported by:



Related posts :



What’s on the programme at #AIES2025?

  17 Oct 2025
The conference on AI, ethics, and society will take place in Madrid from 20-22 October.

Generative AI model maps how a new antibiotic targets gut bacteria

  16 Oct 2025
Researchers used a GenAI model to reveal how a narrow-spectrum antibiotic attacks disease-causing bacteria.

What’s coming up at #IROS2025?

  15 Oct 2025
Find out what the International Conference on Intelligent Robots and Systems has in store.

Applying machine learning to chip design and manufacturing: interview with Lorenzo Servadei

  14 Oct 2025
Find out how Lorenzo and his team are using ML and Electronic Design Automation.

Why we should be skeptical of the hasty global push to test 15-year-olds’ AI literacy in 2029

  13 Oct 2025
Are schools set to become testing grounds for AI developments?

Machine learning for atomic-scale simulations: balancing speed and physical laws

How much underlying physics can we safely “shortcut” without breaking a simulation?

Policy design for two-sided platforms with participation dynamics: interview with Haruka Kiyohara

  09 Oct 2025
Studying the long-term impacts of decision-making algorithms on two-sided platforms such as e-commerce or music streaming apps.

The Machine Ethics podcast: What excites you about AI? Vol.2

This is a bonus episode looking back over answers to our question: What excites you about AI?



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence