ΑΙhub.org
 

Four ways that AI can help students


by
09 May 2023



share this:
blackboard with lots of arrow drwn on in white chalk

By W. Ian O’Byrne, College of Charleston

As artificial intelligence systems play a bigger role in everyday life, they’re changing the world of education, too.

OpenAI’s ChatGPT, Microsoft’s Bing and Google’s Bard all come with both risks and opportunities.

I am a literacy educator and researcher, and here are four ways I believe these kinds of systems can be used to help students learn.

1. Differentiated instruction

Teachers are taught to identify the learning goals of all students in a class and adapt instruction for the specific needs of individual students. But with 20 or more students in a classroom, fully customized lessons aren’t always realistic. Everyone learns differently.

An AI system can observe how a student proceeds through an assigned task, how much time they take and whether they are successful. If the student is struggling, the system can offer help; if the student is succeeding, the system can present more difficult tasks to keep the activity challenging.

This type of real-time feedback is often difficult for an educator or school to do for a single student, let alone an entire class or campus. AI adaptive learning tools have been shown to quickly and dynamically make changes to the learning environment, content, and tasks to help individuals learn more and quickly improve.

For instance, researchers at the Human-Computer Interaction Institute at Carnegie Mellon University taught a system how to solve a math problem. The system can follow instructions from a human supervisor to understand mathematical rules and adapt its approach to problems it has never seen before. The system can also identify areas where it had to make multiple attempts before arriving at the correct answer, flag those for teachers as places human students may get confused, and highlight methods the system used to more efficiently arrive at the right answer.

2. Intelligent textbooks

Researchers at Stanford have been developing and testing a prototype of what’s called an “intelligent textbook,” titled “Inquire.” It is an iPad app that monitors students’ focus and attention while they read by paying attention to how students interact with the app. The interactive text includes definitions of key words accessible by touch or click and allows students to highlight and annotate while reading.

The textbook can also suggest questions about the content and areas for future inquiry that are customized for each individual. It can change the reading level of the text and also include supplemental photos, videos and materials to help students understand what they’re studying.

3. Improved assessment

Educational assessment focuses on how an educator knows whether a student is learning what is being taught. Traditional assessments – essays, multiple-choice tests, short-answer questions – are little changed from a century ago. Artificial intelligence has the potential to change that by identifying patterns in learning that may not be apparent to individual teachers or administrators.

For instance, the language-learning company Duolingo uses AI and machine learning to create and score tests of English proficiency for universities, companies and government agencies. The tests start with a series of standard questions, but based on how the student does with those, the system will select harder or easier questions to more quickly identify a student’s exact abilities and weaknesses.

Another assessment project, Reach Every Reader, staffed by the Harvard Graduate School of Education, MIT and Florida State University, creates educational games for parents to play with their children while teaching them to read. Some of the games have adults and children role-play as characters based on real-life scenarios.

These games can help parents and teachers efficiently determine whether children are reading at their appropriate grade level and get them on track if they are not.

4. Personalized learning

Personalized learning occurs when the students’ interests and goals guide learning. The teacher is more of a facilitator, while the what, why and how of learning are mostly dictated by the student. Artificial intelligence systems can provide individualized instruction tailored to each student’s individual interests.

AI adaptive learning systems can quickly identify when a student is struggling and then provide more or different support to help them succeed. As the student shows that they have mastered the content or skill, the AI tool provides more difficult tasks and materials to further challenge the learner.

Chatbots have been used to respond to typed or spoken input. Many individuals interact with a chatbot when they ask Alexa or Siri a question. In education, chatbots with artificial intelligence systems can guide students with personalized, just-in-time feedback or assistance. These chatbots can answer questions about course content or structure. This helps students keep track of their own learning while keeping them motivated and engaged.

Much like an automated playlist of musical or video recommendations, an AI-powered recommender system can generate tailored assessment questions, detect misunderstandings and suggest new areas for a learner to explore. These AI technologies have the potential to help learners today and in the future.The Conversation

W. Ian O’Byrne, Associate Professor of Literacy Education, College of Charleston

This article is republished from The Conversation under a Creative Commons license. Read the original article.




The Conversation is an independent source of news and views, sourced from the academic and research community and delivered direct to the public.
The Conversation is an independent source of news and views, sourced from the academic and research community and delivered direct to the public.




            AIhub is supported by:



Related posts :



AAAI presidential panel – AI perception versus reality video discussion

  02 Jan 2026
Watch the second panel discussion in this series from AAAI.

More than half of new articles on the internet are being written by AI

  31 Dec 2025
The line between human and machine authorship is blurring, particularly as it’s become increasingly difficult to tell whether something was written by a person or AI.
monthly digest

2025 digest of digests

  30 Dec 2025
We look back through the archives of our monthly digests to pick out some highlights from the year.
monthly digest

AIhub monthly digest: December 2025 – studying bias in AI-based recruitment tools, an image dataset for ethical AI benchmarking, and end of year com

  29 Dec 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Half of UK novelists believe AI is likely to replace their work entirely

  24 Dec 2025
A new report asks literary creatives about their views on generative AI tools and LLM-authored books.

RL without TD learning

  23 Dec 2025
This post introduces a reinforcement learning algorithm based on a divide and conquer paradigm.

AIhub interview highlights 2025

  22 Dec 2025
Join us for a look back at some of the interviews we've conducted with members of the AI community.

Identifying patterns in insect scents using machine learning

  19 Dec 2025
Scientists will use machine learning to predict what types of molecules interact with insect olfactory receptors.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence