ΑΙhub.org
 

Investigating fairness in machine learning with Na Zou


by
10 August 2023



share this:

Na Zou
By Alyson Chapman

Based on data, machine learning can quickly and efficiently analyze large amounts of information to provide suggestions and help make decisions. For example, phones and computers expose us to machine learning technologies such as voice recognition, personalized shopping suggestions, targeted advertisements and email filtering.

Machine learning impacts extensive applications across diverse sectors of the economy, including health care, public services, education and employment opportunities. However, it also brings challenges related to bias in the data and algorithms it uses, potentially leading to discrimination against specific individuals or groups.

To help combat this problem, Dr Na Zou, an assistant professor in the Department of Engineering Technology and Industrial Distribution at Texas A&M University, aims to develop a data-centric fairness framework. To support her research, Zou received the National Science Foundation’s Faculty Early Career Development Program (CAREER) Award.

She will focus on developing a framework from different aspects of common data mining practices that can eliminate or reduce bias, promote data quality and improve modeling processes for machine learning.

“Machine learning models are becoming pervasive in real-world applications and have been increasingly deployed in high-stakes decision-making processes, such as loan management, job applications and criminal justice,” Zou said. “Fair machine learning has the potential to reduce or eliminate bias from the decision-making process, avoid making unwarranted implicit associations or amplifying societal stereotypes about people.”

Fairness in machine learning

According to Zou, fairness in machine learning refers to the methods or algorithms used to solve the phenomenon that machine learning algorithms naturally inherit or even amplify the bias in the data.

“For example, in health care, fair machine learning can help reduce health disparities and improve health outcomes,” Zou said. “By avoiding biased decision making, medical diagnoses, treatment plans and resource allocations can be more equitable and effective for diverse patient populations.”

Additionally, users of machine learning systems can enhance their experiences across various applications by mitigating bias. For instance, fair algorithms can incorporate individual preferences in recommendation systems or personalized services without perpetuating stereotypes or excluding certain groups.

To develop unbiased machine learning technologies, Zou will investigate data-centric algorithms capable of systemically modifying datasets to improve model performance. She will also look at theories that facilitate fairness through improving data quality, while incorporating insights from previous research in implicit fairness modeling.

The challenge of developing a fairness framework lies in problems within the original data used in machine learning technologies. In some instances, the data may lack quality, leading to missing values, incorrect labels and anomalies. In addition, when the trained algorithms are deployed in real-world systems, they usually face problems of deteriorated performance due to data distribution shifts, such as a covariate or concept shift. Although the data can be incomplete, it is used to make impactful decisions throughout various fields.

“For example, the trained models on images from sketches and paintings may not achieve satisfactory performance when used in natural images or photos,” Zou said. “Thus, the data quality and distribution shift issues make detecting and mitigating models’ discriminative behavior much more difficult.”

If successful, Zou believes the outcome of this project will lead to advances in facilitating fairness in computing. The project will produce effective and efficient algorithms to explore fair data characteristics from different perspectives and enhance generalizability and trust in the machine learning field. This research is expected to impact the broad utilization of machine learning algorithms in essential applications, enabling non-discrimination decision-making processes and prompting a more transparent platform for future information systems.

“Receiving this award will help me achieve my short-term and long-term goals,” Zou said. “My short-term goal is to develop fair machine learning algorithms through mitigating fairness issues from computational challenges and broadening the impact through disseminating research outcomes and a comprehensive educational toolkit. The long-term goal is to extend the efforts to all aspects of society to deploy fairness-aware information systems and enhance society-level fair decision-making through intensive collaborations with industries.”




Texas A&M




            AIhub is supported by:


Related posts :



monthly digest

AIhub monthly digest: March 2025 – human-allied AI, differential privacy, and social media microtargeting

  28 Mar 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

AI ring tracks spelled words in American Sign Language

  27 Mar 2025
In its current form, SpellRing could be used to enter text into computers or smartphones via fingerspelling.

How AI images are ‘flattening’ Indigenous cultures – creating a new form of tech colonialism

  26 Mar 2025
AI-generated stock images that claim to depict “Indigenous Australians”, don’t resemble Aboriginal and Torres Strait Islander peoples.

Interview with Lea Demelius: Researching differential privacy

  25 Mar 2025
We hear from doctoral consortium participant Lea Demelius who is investigating the trade-offs and synergies that arise between various requirements for trustworthy AI.

The Machine Ethics podcast: Careful technology with Rachel Coldicutt

This episode, Ben chats to Rachel Coldicutt about AI taxonomy, innovating for everyone not just the few, responsibilities of researchers, and more.

Interview with AAAI Fellow Roberto Navigli: multilingual natural language processing

  21 Mar 2025
Roberto tells us about his career path, some big research projects he’s led, and why it’s important to follow your passion.

Museums have tons of data, and AI could make it more accessible − but standardizing and organizing it across fields won’t be easy

  20 Mar 2025
How can AI models help organize large amounts of data from different collections, and what are the challenges?

Shlomo Zilberstein wins the 2025 ACM/SIGAI Autonomous Agents Research Award

  19 Mar 2025
Congratulations to Shlomo Zilberstein on winning this prestigious award!




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association