ΑΙhub.org
 

Agent Teaming in Mixed-Motive Situations – an AAAI Fall symposium


by
08 January 2024



share this:

Image by Jamillah Knowles & Reset.Tech Australia / © https://au.reset.tech/ / Better Images of AI / Detail from Connected People / Licenced by CC-BY 4.0

The AAAI Symposium on Agent Teaming in Mixed-Motive Situations, held from October 25-27, 2023, showcased the challenges and innovations in multi-agent interactions with varying goals and decision-making processes. The event featured experts from diverse backgrounds, including multi-agent systems, AI, and organizational behavior. Key highlights include:

  • Professor Subbarao Khambhampati’s (Arizona State University) keynote discussed the dual nature of mental modeling in cooperation and competition. The importance of obfuscatory behavior, controlled observability planning, and the use of explanations for model reconciliation was emphasized, particularly regarding trust-building in human-robot interactions.
  • Professor Gita Sukthankar’s (University of Central Florida) talk focused on challenges in teamwork, using a case study on software engineering teams. Innovative techniques for distinguishing effective teams from ineffective ones were explored, setting the stage for discussions on the complexities of mixed-motive scenarios.
  • Dr Marc Steinberg (Office of Naval Research) moderated an interactive discussion exploring research challenges in mixed-motive teams, including modeling humans, experimental setups, and measuring and assessing mixed-motive situations. This discussion provided diverse perspectives on the evolving landscape of agent teaming.
  • Accepted papers covered a wide range of topics, including maximum entropy reinforcement learning, multi-agent path finding, Bayesian inverse planning for communication scenarios, hybrid navigation acceptability, and safety. Talks also delved into challenges in human-robot teams and the importance of aligning robot values with human preferences.
  • Panel sessions explored themes such as team structure, collaboration within diverse teams, the role of game theory, and explicit and implicit communication within teams. Meta-level parameters for multi-agent collaboration and the importance of context in human-agent communication in mixed-motive settings were discussed.
  • Breakout group discussions focused on consensus and negotiation in mixed-motive groups, considering intragroup and intergroup dynamics. The impact of consensus on trust and future work in mixed-motive teaming, including interdisciplinary collaborations and resource identification, were explored.
  • The symposium successfully brought together a community actively addressing challenges in agent teaming within mixed-motive situations. The discussions highlighted the complexities of collaboration, trust-building, and decision-making in diverse multi-agent scenarios. Ongoing research and continued collaboration were emphasized to advance understanding in this field.

Useful links



tags: ,


Suresh Kumaar Jayaraman is a postdoctoral researcher at the Robotics Institute at Carnegie Mellon University.
Suresh Kumaar Jayaraman is a postdoctoral researcher at the Robotics Institute at Carnegie Mellon University.




            AIhub is supported by:



Related posts :

Learning to see the physical world: an interview with Jiajun Wu

and   17 Feb 2026
Winner of the 2019 AAAI / ACM SIGAI dissertation award tells us about his current research.

3 Questions: Using AI to help Olympic skaters land a quint

  16 Feb 2026
Researchers are applying AI technologies to help figure skaters improve. They also have thoughts on whether five-rotation jumps are humanly possible.

AAAI presidential panel – AI and sustainability

  13 Feb 2026
Watch the next discussion based on sustainability, one of the topics covered in the AAAI Future of AI Research report.

How can robots acquire skills through interactions with the physical world? An interview with Jiaheng Hu

  12 Feb 2026
Find out more about work published at the Conference on Robot Learning (CoRL).

From Visual Question Answering to multimodal learning: an interview with Aishwarya Agrawal

and   11 Feb 2026
We hear from Aishwarya about research that received a 2019 AAAI / ACM SIGAI Doctoral Dissertation Award honourable mention.

Governing the rise of interactive AI will require behavioral insights

  10 Feb 2026
Yulu Pi writes about her work that was presented at the conference on AI, ethics and society (AIES 2025).

AI is coming to Olympic judging: what makes it a game changer?

  09 Feb 2026
Research suggests that trust, legitimacy, and cultural values may matter just as much as technical accuracy.

Sven Koenig wins the 2026 ACM/SIGAI Autonomous Agents Research Award

  06 Feb 2026
Sven honoured for his work on AI planning and search.


AIhub is supported by:







 













©2026.01 - Association for the Understanding of Artificial Intelligence