ΑΙhub.org
 

#AAAI2024 workshops round-up 2: AI for credible elections, and are large language models simply causal parrots?


by
12 March 2024



share this:

A crowd of people outside a packed roomA packed room for the workshop “Are Large Language Models Simply Causal Parrots?” Photo credit: Emily McMilin.

In this second round-up of the workshops at AAAI 2024, we hear from the organisers of the workshops on:

  • Are Large Language Models Simply Causal Parrots?
  • AI for Credible Elections: A Call To Action with Trusted AI

Are Large Language Models Simply Causal Parrots?

Organisers: Matej Zečević, Amit Sharma, Lianhui Qin, Devendra Singh Dhami, Alex Molak, Kristian Kersting.

The aim of this workshop was to bring together researchers interested in identifying to what extent we could consider the output and internal workings of large language models (LLMs) to be causal.

Workshop organisers Matej Zečević, Alex Molak and Devendra Singh Dhami. Image credit: Alex Molak.

  • Speakers presented various perspectives on large language models (LLMs) in the context of causality and symbolic reasoning. Emre Kıcıman (Microsoft Research) emphasized that LLMs can be useful in the applied causal process, even if they don’t have fully generalizable causal capabilities.
  • Andrew Lampinen (Google DeepMind) shared the insights from his work, suggesting that LLMs can learn generalizable causal strategies under certain circumstances, but these circumstances are likely not met for the existing models. Guy van den Broeck (UCLA) presented his work on constraining and conditioning LLM generation using hidden Markov models (HMMs).
  • Judea Pearl shared his thoughts on the possibility of LLMs learning a partial implicit world model. He concluded his inspiring talk with a call for new “meta-science” based on lingual and/or statistical integration of conventional sciences. During the open stage workshop summary, participants shared their thoughts and conclusions. The voices were diverse: from strong conviction that LLMs are in fact “causal parrots” regurgitating statistical associations to more careful considerations that it might be too early for us to answer this question.

Emre Kıcıman giving his invited talk “A New Frontier at the Intersection of Causality and LLMs”. Photo credit: Alex Molak.

By Alex Molak


AI for Credible Elections: A Call To Action with Trusted AI

Organisers: Biplav Srivastava, Anita Nikolich, Andrea Hickerson, Chris Dawes, Tarmo Koppel, Sachindra Joshi, Ponnaguram Kumaraguru.

A panel discussion in action. Photo credit: Stanley Simoes.

This workshop examined the challenges of credible elections globally in an academic setting with apolitical discussion of significant issues. The three main takeaways from the event were:

  • AI will impact elections in the coming year(s), but not all problems around elections and democracy are due to AI. A multi-pronged solution is needed: process, people, technology.
  • Information disorders are a key concern with elections but need not be a deal-breaker. AI can specifically help elections by disseminating official information personalized to a voter’s cognitive needs at scale, in their language and format.
  • More focus is needed in developing data sources, information system stack, testing and funding for AI and elections. We can continue the discussion on the Google group – Credible Elections with AI Lead Technologies. A longer blog summarizing the workshop is here.

Photo credit: Biplav Srivastava.

By Biplav Srivastava




tags: ,


AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:



Related posts :



Forthcoming machine learning and AI seminars: December 2025 edition

  01 Dec 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 1 December 2025 and 31 January 2026.
monthly digest

AIhub monthly digest: November 2025 – learning robust controllers, trust in multi-agent systems, and a new fairness evaluation dataset

  28 Nov 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

EU proposal to delay parts of its AI Act signal a policy shift that prioritises big tech over fairness

  27 Nov 2025
The EC has proposed delaying parts of the act until 2027 following intense pressure from tech companies and the Trump administration.

Better images of AI on book covers

  25 Nov 2025
We share insights from Chrissi Nerantzi on the decisions behind the cover of the open-sourced book ‘Learning with AI’, and reflect on the significance of book covers.

What is AI poisoning? A computer scientist explains

  24 Nov 2025
Poisoning is a growing problem in the world of AI – in particular, for large language models.

New AI technique sounding out audio deepfakes

  21 Nov 2025
Researchers discover a smarter way to detect audio deepfakes that is more accurate and adaptable to keep pace with evolving threats.

Learning robust controllers that work across many partially observable environments

  20 Nov 2025
Exploring designing controllers that perform reliably even when the environment may not be precisely known.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence