ΑΙhub.org
 

#AAAI2024 workshops round-up 2: AI for credible elections, and are large language models simply causal parrots?


by
12 March 2024



share this:

A crowd of people outside a packed roomA packed room for the workshop “Are Large Language Models Simply Causal Parrots?” Photo credit: Emily McMilin.

In this second round-up of the workshops at AAAI 2024, we hear from the organisers of the workshops on:

  • Are Large Language Models Simply Causal Parrots?
  • AI for Credible Elections: A Call To Action with Trusted AI

Are Large Language Models Simply Causal Parrots?

Organisers: Matej Zečević, Amit Sharma, Lianhui Qin, Devendra Singh Dhami, Alex Molak, Kristian Kersting.

The aim of this workshop was to bring together researchers interested in identifying to what extent we could consider the output and internal workings of large language models (LLMs) to be causal.

Workshop organisers Matej Zečević, Alex Molak and Devendra Singh Dhami. Image credit: Alex Molak.

  • Speakers presented various perspectives on large language models (LLMs) in the context of causality and symbolic reasoning. Emre Kıcıman (Microsoft Research) emphasized that LLMs can be useful in the applied causal process, even if they don’t have fully generalizable causal capabilities.
  • Andrew Lampinen (Google DeepMind) shared the insights from his work, suggesting that LLMs can learn generalizable causal strategies under certain circumstances, but these circumstances are likely not met for the existing models. Guy van den Broeck (UCLA) presented his work on constraining and conditioning LLM generation using hidden Markov models (HMMs).
  • Judea Pearl shared his thoughts on the possibility of LLMs learning a partial implicit world model. He concluded his inspiring talk with a call for new “meta-science” based on lingual and/or statistical integration of conventional sciences. During the open stage workshop summary, participants shared their thoughts and conclusions. The voices were diverse: from strong conviction that LLMs are in fact “causal parrots” regurgitating statistical associations to more careful considerations that it might be too early for us to answer this question.

Emre Kıcıman giving his invited talk “A New Frontier at the Intersection of Causality and LLMs”. Photo credit: Alex Molak.

By Alex Molak


AI for Credible Elections: A Call To Action with Trusted AI

Organisers: Biplav Srivastava, Anita Nikolich, Andrea Hickerson, Chris Dawes, Tarmo Koppel, Sachindra Joshi, Ponnaguram Kumaraguru.

A panel discussion in action. Photo credit: Stanley Simoes.

This workshop examined the challenges of credible elections globally in an academic setting with apolitical discussion of significant issues. The three main takeaways from the event were:

  • AI will impact elections in the coming year(s), but not all problems around elections and democracy are due to AI. A multi-pronged solution is needed: process, people, technology.
  • Information disorders are a key concern with elections but need not be a deal-breaker. AI can specifically help elections by disseminating official information personalized to a voter’s cognitive needs at scale, in their language and format.
  • More focus is needed in developing data sources, information system stack, testing and funding for AI and elections. We can continue the discussion on the Google group – Credible Elections with AI Lead Technologies. A longer blog summarizing the workshop is here.

Photo credit: Biplav Srivastava.

By Biplav Srivastava




tags: ,


AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



AI UK 2025 conference recordings now available to watch

  11 Apr 2025
Listen to the talks from this year's AI UK conference.

#AAAI2025 workshops round-up 2: Open-source AI for mainstream use, and federated learning for unbounded and intelligent decentralization

  10 Apr 2025
We hear from the organisers of two workshops at AAAI2025 and find out the key takeaways from their events.

Accelerating drug development with AI

  09 Apr 2025
Waterloo researchers use machine learning to predict how new drugs could affect the body

ChatGPT’s Studio Ghibli-style images show its creative power – but raise new copyright problems

  08 Apr 2025
Social media has recently been flooded with images that look like they belong in a Studio Ghibli film.

#AAAI2025 invited talk round-up 1: labour economics, and reasoning about spatial information

  07 Apr 2025
We give a flavour of two plenary talks from the AAAI conference in Philadelphia.

Everything you say to an Alexa speaker will now be sent to Amazon

  04 Apr 2025
This change was implemented on 28 March 2025.

End-to-end data-driven weather prediction

  04 Apr 2025
A new AI weather prediction system, developed by a team of researchers, can deliver accurate forecasts.

Interview with Joseph Marvin Imperial: aligning generative AI with technical standards

  02 Apr 2025
Joseph tells us about his PhD research so far and his experience at the AAAI 2025 Doctoral Consortium.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association