ΑΙhub.org
 

Machine learning accelerates discovery of solar-cell perovskites


by
28 May 2024



share this:

Through the generation of a dataset of accurate band gaps for perovskite materials and the use of machine learning methods, several promising halide perovskites are identified for photovoltaic applications. Credit: H. Wang (EPFL)

By Nik Papageorgiou

As we integrate solar energy into our daily lives, it has become important to find materials that efficiently convert sunlight into electricity. While silicon has dominated solar technology so far, there is also a steady turn towards materials known as perovskites due to their lower costs and simpler manufacturing processes.

The challenge, however, has been to find perovskites with the right “band gap”: a specific energy range that determines how efficiently a material can absorb sunlight and convert it into electricity without losing it as heat.

Now, an EPFL research project led by Haiyuan Wang and Alfredo Pasquarello, with collaborators in Shanghai and in Louvain-La-Neuve, have developed a method that combines advanced computational techniques with machine-learning to search for optimal perovskite materials for photovoltaic applications. The approach could lead to more efficient and cheaper solar panels, transforming solar industry standards.

The researchers began by developing a comprehensive and high-quality dataset of band-gap values for 246 perovskite materials. The dataset was constructed using advanced calculations based on hybrid functionals – a sophisticated type of computation that includes electron exchange, and improves upon the more conventional Density Functional Theory (DFT). DFT is a quantum mechanical modeling method used to investigate the electronic structure of many-body systems like atoms and molecules.

The hybrid functionals used were “dielectric-dependent,” meaning that they incorporated the material’s electronic polarization properties into their calculations. This significantly enhanced the accuracy of the band-gap predictions compared to standard DFT, which is particularly important for materials like perovskites where electron interaction and polarization effects are crucial to their electronic properties.

The resulting dataset provided a robust foundation for identifying perovskite materials with optimal electronic properties for applications such as photovoltaics, where precise control over band-gap values is essential for maximizing efficiency.

The team then used the band-gap calculations to develop a machine-learning model trained on the 246 perovskites, and applied it to a database of around 15,000 candidate materials for solar cells, narrowing down the search to the most promising perovskites based on their predicted band gaps and stability. The model identified 14 completely new perovskites, all with band gaps and high enough energetic stability to make them excellent candidates for high-efficiency solar cells.

Reference

High-quality data enabling universality of band-gap descriptor and discovery of new photovoltaic perovskites, Haiyuan Wang, Runhai Ouyang, Wei Chen, Alfredo Pasquarello, Journal of the American Chemical Society, 2024.



tags: ,


EPFL




            AIhub is supported by:



Related posts :



Policy design for two-sided platforms with participation dynamics: Interview with Haruka Kiyohara

  09 Oct 2025
Studying the long-term impacts of decision-making algorithms on two-sided platforms such as e-commerce or music streaming apps.

The Machine Ethics podcast: What excites you about AI? Vol.2

This is a bonus episode looking back over answers to our question: What excites you about AI?

Interview with Janice Anta Zebaze: using AI to address energy supply challenges

  07 Oct 2025
Find out more about research combining renewable energy systems, tribology, and artificial intelligence.

How does AI affect how we learn? A cognitive psychologist explains why you learn when the work is hard

  06 Oct 2025
Early research is only beginning to scratch the surface of how AI technology will truly affect learning and cognition in the long run.

Interview with Zahra Ghorrati: developing frameworks for human activity recognition using wearable sensors

  03 Oct 2025
Find out more about research developing scalable and adaptive deep learning frameworks.

Diffusion beats autoregressive in data-constrained settings

  03 Oct 2025
How can we trade off more compute for less data?

Forthcoming machine learning and AI seminars: October 2025 edition

  02 Oct 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 3 October and 30 November 2025.
monthly digest

AIhub monthly digest: September 2025 – conference reviewing, soccer ball detection, and memory traces

  30 Sep 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence