ΑΙhub.org
 

Nobel Prizes in physics and chemistry awarded for machine learning research


by
10 October 2024



share this:

©Johan Jarnestad/The Royal Swedish Academy of Sciences

The 2024 Nobel Prizes for physics and chemistry were announced on 8 and 9 October respectively. Both prizes were awarded for work enabling or using machine learning.

2024 Nobel Prize in Physics

The physics prize has been awarded to:

  • John Hopfield – “for foundational discoveries and inventions that enable machine learning with artificial neural networks”
  • Geoffrey Hinton– “for foundational discoveries and inventions that enable machine learning with artificial neural networks”

More specifically, Hopfield is recognised for “inventing a network that uses a method for saving and recreating patterns”. This Hopfield network utilises physics that describes a material’s characteristics due to its atomic spin. The network as a whole is described in a manner equivalent to the energy in the spin system found in physics, and is trained by finding values for the connections between the nodes so that the saved images have low energy. When the Hopfield network is fed a distorted or incomplete image, it methodically works through the nodes and updates their values so the network’s energy falls. The network thus works stepwise to find the saved image that is most like the imperfect one it was fed with.

Hinton is recognised for “using the Hopfield network as the foundation for a new network that uses a different method: the Boltzmann machine“. The Boltzmann machine is programmed to “recognise” characteristic elements in a given type of data, and is trained on examples that are very likely to arise when the machine is run. The Boltzmann machine can be used to classify images or create new examples of the type of pattern on which it was trained.

2024 Nobel Prize in Chemistry

One half of the chemistry prize has been awarded to:

  • David Baker – “for computational protein design”

and the other half jointly to:

  • Demis Hassabis – “for protein structure prediction”
  • John Jumper– “for protein structure prediction”

In more detail, Baker was honoured for “using amino acids to design a new protein that was unlike any other protein”. Since then, his research group has produced more new proteins, including those that can be used as pharmaceuticals, vaccines, nanomaterials and sensors.

Hassabis and Jumper are recognised for their model AlphaFold2 which is used for protein structure prediction. AlphaFold2 has been used by more than two million people from 190 countries, and “has enabled researchers to better understand antibiotic resistance and create images of enzymes that can decompose plastic”.

Find out more



tags:


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



RoboCup Logistics League: an interview with Alexander Ferrein, Till Hofmann and Wataru Uemura

  25 Sep 2025
Find out more about the RoboCup league focused on production logistics and the planning.

Data centers consume massive amounts of water – companies rarely tell the public exactly how much

  24 Sep 2025
Why do data centres need so much water, and how much do they use?

Interview with Luc De Raedt: talking probabilistic logic, neurosymbolic AI, and explainability

  23 Sep 2025
AIhub ambassador Liliane-Caroline Demers caught up with Luc de Raedt at IJCAI 2025 to find out more about his research.

Call for AAAI educational AI videos

  22 Sep 2025
Submit your contributions by 30 November 2025.

Self-supervised learning for soccer ball detection and beyond: interview with winners of the RoboCup 2025 best paper award

  19 Sep 2025
Method for improving ball detection can also be applied in other fields, such as precision farming.

How AI is opening the playbook on sports analytics

  18 Sep 2025
Waterloo researchers create simulated soccer datasets to unlock insights once reserved for pro teams.

Discrete flow matching framework for graph generation

and   17 Sep 2025
Read about work presented at ICML 2025 that disentangles sampling from training.

We risk a deluge of AI-written ‘science’ pushing corporate interests – here’s what to do about it

  16 Sep 2025
A single individual using AI can produce multiple papers that appear valid in a matter of hours.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence