ΑΙhub.org
 

Congratulations to the #AAAI2025 outstanding paper award winners


by
01 March 2025



share this:

The AAAI 2025 outstanding paper awards were announced during the opening ceremony of the 39th Annual AAAI Conference on Artificial Intelligence on Thursday 27 February. These awards honour papers that “exemplify the highest standards in technical contribution and exposition”. Papers are recommended for consideration during the review process by members of the Program Committee. This year, three papers have been selected as outstanding papers, with a further paper being recognised in the special track on AI for social impact.

AAAI-25 outstanding papers

Every Bit Helps: Achieving the Optimal Distortion with a Few Queries
Soroush Ebadian and Nisarg Shah

Abstract: A fundamental task in multi-agent systems is to match n agents to n alternatives (e.g., resources or tasks). Often, this is accomplished by eliciting agents’ ordinal rankings over the alternatives instead of their exact numerical utilities. While this simplifies elicitation, the incomplete information leads to inefficiency, captured by a worst-case measure called distortion. A recent line of work shows that making just a few queries to each agent regarding their cardinal utility for an alternative can significantly improve the distortion, with [1] achieving O(\sqrt{n}) distortion with two queries per agent. We generalize their result by achieving O(n^{1/\lambda}) distortion with \lambda queries per agent, for any constant \lambda, which is optimal given a previous lower bound by [2]. We also extend our finding to the general social choice problem, where one of m alternatives must be chosen based on the preferences of n agents, and show that O((\min\{n,m\})^{1/\lambda}) distortion can be achieved with \lambda queries per agent, for any constant \lambda, which is also optimal given prior results. Thus, for both problems, our work settles open questions regarding the optimal distortion achievable using a fixed number of cardinal value queries.

Read the paper in full here.


Efficient Rectification of Neuro-Symbolic Reasoning Inconsistencies by Abductive Reflection
Wen-Chao Hu, Yuan Jiang, Zhi-Hua Zhou, Wang-Zhou Dai

Abstract: Neuro-Symbolic (NeSy) AI could be regarded as an analogy to human dual-process cognition, modeling the intuitive System 1 with neural networks and the algorithmic System 2 with symbolic reasoning. However, for complex learning targets, NeSy systems often generate outputs inconsistent with domain knowledge and it is challenging to rectify them. Inspired by the human Cognitive Reflection, which promptly detects errors in our intuitive response and revises them by invoking the System 2 reasoning, we propose to improve NeSy systems by introducing Abductive Reflection (ABL-Refl) based on the Abductive Learning (ABL) framework. ABL-Refl leverages domain knowledge to abduce a reflection vector during training, which can then flag potential errors in the neural network outputs and invoke abduction to rectify them and generate consistent outputs during inference. ABL-Refl is highly efficient in contrast to previous ABL implementations. Experiments show that ABL-Refl outperforms state-of-the-art NeSy methods, achieving excellent accuracy with fewer training resources and enhanced efficiency.

Read the paper in full here.


Revelations: A Decidable Class of POMDPs with Omega-Regular Objectives
Marius Belly, Nathanaël Fijalkow, Hugo Gimbert, Florian Horn, Guillermo Perez, Pierre Vandenhove

Abstract: Partially observable Markov decision processes (POMDPs) form a prominent model for uncertainty in sequential decision making. We are interested in constructing algorithms with theoretical guarantees to determine whether the agent has a strategy ensuring a given specification with probability 1. This well-studied problem is known to be undecidable already for very simple omega-regular objectives, because of the difficulty of reasoning on uncertain events. We introduce a revelation mechanism which restricts information loss by requiring that almost surely the agent has eventually full information of the current state. Our main technical results are to construct exact algorithms for two classes of POMDPs called weakly and strongly revealing. Importantly, the decidable cases reduce to the analysis of a finite belief-support Markov decision process. This yields a conceptually simple and exact algorithm for a large class of POMDPs.

Read the paper in full here.


AAAI-25 outstanding paper – special track on AI for social impact (AISI)

DivShift: Exploring Domain-Specific Distribution Shifts in Large-Scale, Volunteer-Collected Biodiversity Datasets
Elena Sierra, Teja Katterborn, Salim Soltani, Lauren Gillespie, Moisés Expósito-Alonso

Abstract: Large-scale, volunteer-collected datasets of community-identified natural world imagery like iNaturalist have enabled marked performance gains for fine-grained visual classification of plant species using deep learning models. However, such datasets are opportunistic and lack a structured sampling strategy. Resulting geographic, temporal, observation quality, and socioeconomic biases inherent to this volunteer-based participatory data collection process are stymieing the wide uptake of these models for downstream biodiversity monitoring tasks, especially in the Global South. While widely documented in biodiversity modeling literature, the impact of these biases’ downstream distribution shift on deep learning models have not been rigorously quantified. Here we introduce Diversity Shift (DivShift), a framework for quantifying the effects of biodiversity domain-specific distribution shifts on deep learning model performance. We also introduce DivShift – West Coast Plant (DivShift-WCP), a new curated dataset of almost 8 million iNaturalist plant observations across the western coast of North America, for diagnosing the effects of these biases in a controlled case study. Using this new dataset, we contrast computer vision model performance across a variety of these shifts and observe that these biases indeed confound model performance across observation quality, spatial location, and political boundaries. Interestingly, we find for all partitions that accuracy is lower than expected by chance from estimates of dataset shift from the data themselves, implying the structure within natural world images provides significant generalization improvements. From these observations, we suggest recommendations training computer vision models on natural world imagery biodiversity collections.

Read the paper in full here.




tags: , ,


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



Forthcoming machine learning and AI seminars: March 2025 edition

  03 Mar 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 3 March and 30 April 2025.

#AAAI2025 social media round-up: part one

  28 Feb 2025
Find out what participants have been getting up to during the first few of days at the conference

Congratulations to the #AAAI2025 award winners

  27 Feb 2025
Find out who has won the prestigious 2025 awards for their contributions to the field.

Interview with AAAI Fellow Sriraam Natarajan: Human-allied AI

  26 Feb 2025
Sriraam tells us about his career path, research on human-allied AI, reflections on changes to the AI landscape, and passion for cricket.
monthly digest

AIhub monthly digest: February 2025 – kernel representation learning, fairness in machine learning, and bad practice in the publication world

  25 Feb 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Generative AI, online platforms and compensation for content: the need for a new framework

  24 Feb 2025
The rise of AI requires us to rethink the distribution models between those who produce content and those who use it

Generative AI is already being used in journalism – here’s how people feel about it

  21 Feb 2025
New report draws on three years of interviews and focus group research into generative AI and journalism

Charlotte Bunne on developing AI-based diagnostic tools

  20 Feb 2025
To advance modern medicine, EPFL researchers are developing AI-based diagnostic tools. Their goal is to predict the best treatment a patient should receive.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association