ΑΙhub.org
 

New AI technique sounding out audio deepfakes


by
21 November 2025



share this:

Researchers from Australia’s national science agency CSIRO, Federation University Australia and RMIT University have developed a method to improve the detection of audio deepfakes.

The new technique, Rehearsal with Auxiliary-Informed Sampling (RAIS), is designed for audio deepfake detection — a growing threat in cybercrime risks such as bypassing voice-based biometric authentication systems, impersonation and disinformation. It determines whether an audio clip is real or artificially generated (a ‘deepfake’) and maintains performance over time as attack types evolve.

In Italy earlier this year, an AI-cloned voice of its Defence Minister requested a €1M ‘ransom’ from prominent business leaders, convincing some to pay. This is just one of many examples, highlighting the need for audio deepfake detectors.

As deepfake audio technology advances rapidly, newer ‘fake techniques’ often look nothing like the older ones.

“We want these detection systems to learn the new deepfakes without having to train the model again from scratch. If you just fine-tune on the new samples, it will cause the model to forget the older deepfakes it knew before,” said joint author, Dr Kristen Moore from CSIRO’s Data61.

“RAIS solves this by automatically selecting and storing a small, but diverse set of past examples, including hidden audio traits that humans may not even notice, to help the AI learn the new deepfake styles without forgetting the old ones,” explained Dr Moore.

RAIS uses a smart selection process powered by a network that generates ‘auxiliary labels’ for each audio sample. These labels help identify a diverse and representative set of audio samples to retain and rehearse. By incorporating extra labels beyond simple ‘fake’ or ‘real’ tags, RAIS ensures a richer mix of training data, improving its ability to remember and adapt over time.

Outperforming other methods, RAIS achieves the lowest average error rate of 1.95 per cent across a sequence of five experiences. The code, available on GitHub, remains effective with a small memory buffer and is designed to maintain accuracy as attacks become more sophisticated.

“Audio deepfakes are evolving rapidly, and traditional detection methods can’t keep up,” said Falih Gozi Febrinanto, a recent PhD graduate of Federation University Australia.

“RAIS helps the model retain what it has learned and adapt to new attacks. Overall, it reduces the risk of forgetting and enhances its ability to detect deepfakes.”

“Our approach not only boosts detection performance, but also makes continual learning practical for real-world applications. By capturing the full diversity of audio signals, RAIS sets a new standard for efficiency and reliability,” said Dr Moore.

Read and download the full paper: Rehearsal with Auxiliary-Informed Sampling for Audio Deepfake Detection.




CSIRO




            AIhub is supported by:



Related posts :



Forthcoming machine learning and AI seminars: January 2026 edition

  05 Jan 2026
A list of free-to-attend AI-related seminars that are scheduled to take place between 5 January and 28 February 2026.

AAAI presidential panel – AI perception versus reality video discussion

  02 Jan 2026
Watch the second panel discussion in this series from AAAI.

More than half of new articles on the internet are being written by AI

  31 Dec 2025
The line between human and machine authorship is blurring, particularly as it’s become increasingly difficult to tell whether something was written by a person or AI.
monthly digest

2025 digest of digests

  30 Dec 2025
We look back through the archives of our monthly digests to pick out some highlights from the year.
monthly digest

AIhub monthly digest: December 2025 – studying bias in AI-based recruitment tools, an image dataset for ethical AI benchmarking, and end of year com

  29 Dec 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Half of UK novelists believe AI is likely to replace their work entirely

  24 Dec 2025
A new report asks literary creatives about their views on generative AI tools and LLM-authored books.

RL without TD learning

  23 Dec 2025
This post introduces a reinforcement learning algorithm based on a divide and conquer paradigm.

AIhub interview highlights 2025

  22 Dec 2025
Join us for a look back at some of the interviews we've conducted with members of the AI community.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence