ΑΙhub.org
 

The Good Robot Podcast: featuring Arjun Subramonian


by
20 January 2023



share this:
Space scene with words Good Robot Podcast

Hosted by Eleanor Drage and Kerry Mackereth, The Good Robot is a podcast which explores the many complex intersections between gender, feminism and technology. In this episode, Eleanor and Kerry talk to Arjun Subramonian on queer approaches to AI and computing.

Arjun Subramonian on queer approaches to AI and computing

In this episode we talk to Arjun Subramonian, a Computer Science PhD student at UCLA conducting machine learning research and a member of the grassroots organisation Queer in AI. In this episode we discuss why they joined Queer in AI, how Queer in AI is helping build artificial intelligence directed towards better, more inclusive, and queer futures, why ‘bias’ cannot be seen as a purely technical problem, and why Queer in AI rejected Google sponsorship.

Listen to the episode here:

For the reading list and transcript for this episode, visit The Good Robot website.

Arjun Subramonian (pronouns: they/them) is a brown queer, agender PhD student at the University of California, Los Angeles. Their research focuses on graph representation learning, fairness, and machine learning (ML) ethics. They’re a core organizer of Queer in AI, co-founded QWER Hacks, and teach machine learning and AI ethics at Title I schools in LA. They also love to run, hike, observe and document wildlife, and play the ukulele.

About The Good Robot Podcast

Dr Eleanor Drage and Dr Kerry Mackereth are Research Associates at the Leverhulme Centre for the Future of Intelligence, where they work on the Mercator-Stiflung funded project on Desirable Digitalisation. Previously, they were Christina Gaw Postdoctoral Researchers in Gender and Technology at the University of Cambridge Centre for Gender Studies. During the COVID-19 pandemic they decided to co-found The Good Robot Podcast to explore the many complex intersections between gender, feminism and technology.




The Good Robot Podcast




            AIhub is supported by:



Related posts :



Deploying agentic AI: what worked, what broke, and what we learned

  15 Sep 2025
AI scientist and researcher Francis Osei investigates what happens when Agentic AI systems are used in real projects, where trust and reproducibility are not optional.

Memory traces in reinforcement learning

  12 Sep 2025
Onno writes about work presented at ICML 2025, introducing an alternative memory framework.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Interview with Yezi Liu: Trustworthy and efficient machine learning

  10 Sep 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

Advanced AI models are not always better than simple ones

  09 Sep 2025
Researchers have developed Systema, a new tool to evaluate how well AI models work when predicting the effects of genetic perturbations.

The Machine Ethics podcast: Autonomy AI with Adir Ben-Yehuda

This episode Adir and Ben chat about AI automation for frontend web development, where human-machine interface could be going, allowing an LLM to optimism itself, job displacement, vibe coding and more.

Using generative AI, researchers design compounds that can kill drug-resistant bacteria

  05 Sep 2025
The team used two different AI approaches to design novel antibiotics, including one that showed promise against MRSA.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence