ΑΙhub.org
 

Advancing data justice research and practice project

by
31 March 2023



share this:

black, white and grey hands with text in the backgroundScreenshot from the data justice video.

Advancing data justice research and practice is a collaboration between the Global Partnership on AI (GPAI), The Alan Turing Institute, 12 policy pilot partners, and participants and communities across the globe. The project aims to augment the current thinking around data justice and to provide actionable resources that will help policymakers, practitioners, and impacted communities.

As part of the project, a short series of documentaries tracks the work of the participants. The first instalment was published last year and discusses how data-driven technologies can be deployed in a way which is compatible with values of social justice.

The second episode of this series has recently been released, and you can watch it below. It defines data injustice and explores some case studies of the human consequences of such injustice.

A major contributions of the project has been the production of a series of three practical guides for policymakers, impacted communities, and developers. The guides consist of background content on data justice and how this relates to AI, as well as practical questions for stakeholder groups to consider in their practice, use, and experience of AI/ML systems.

You can find links to all of the guides here. The pdf versions are at these links:
Data Justice in Practice: A Guide for Policymakers
Data Justice in Practice: A Guide for Impacted Communities
Data Justice in Practice: A Guide for Developers

Find out more about the project here.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



The Turing Lectures: Can we trust AI? – with Abeba Birhane

Abeba covers biases in data, the downstream impact on AI systems and our daily lives, how researchers are tackling the problem, and more.
21 November 2024, by

Dynamic faceted search: from haystack to highlight

The authors develop and compare three distinct methods for dynamic facet generation (DFG).
20 November 2024, by , and

Identification of hazardous areas for priority landmine clearance: AI for humanitarian mine action

In close collaboration with the UN and local NGOs, we co-develop an interpretable predictive tool to identify hazardous clusters of landmines.
19 November 2024, by

On the Road to Gundag(AI): Ensuring rural communities benefit from the AI revolution

We need to help regional small businesses benefit from AI while avoiding the harmful aspects.
18 November 2024, by

Making it easier to verify an AI model’s responses

By allowing users to clearly see data referenced by a large language model, this tool speeds manual validation to help users spot AI errors.
15 November 2024, by




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association