ΑΙhub.org
 

New research could block AI models learning from your online content


by
14 August 2025



share this:

“Noise” protection can be added to content before it’s uploaded online.

A new technique developed by Australian researchers could stop unauthorised artificial intelligence (AI) systems learning from photos, artwork and other image-based content.

Developed by CSIRO, Australia’s national science agency, in partnership with the Cyber Security Cooperative Research Centre (CSCRC) and the University of Chicago, the method subtly alters content to make it unreadable to AI models while remaining unchanged to the human eye.

This could help artists, organisations and social media users protect their work and personal data from being used to train AI systems or create deepfakes. For example, a social media user could automatically apply a protective layer to their photos before posting, preventing AI systems from learning facial features for deepfake creation. Similarly, defence organisations could shield sensitive satellite imagery or cyber threat data from being absorbed into AI models.

The technique sets a limit on what an AI system can learn from protected content. It provides a mathematical guarantee that this protection holds, even against adaptive attacks or retraining attempts.

Dr Derui Wang, CSIRO scientist, said the technique offers a new level of certainty for anyone uploading content online.

“Existing methods rely on trial and error or assumptions about how AI models behave,” Dr Wang said. “Our approach is different; we can mathematically guarantee that unauthorised machine learning models can’t learn from the content beyond a certain threshold. That’s a powerful safeguard for social media users, content creators, and organisations.”

Dr Wang said the technique could be applied automatically at scale.

“A social media platform or website could embed this protective layer into every image uploaded,” he said. “This could curb the rise of deepfakes, reduce intellectual property theft, and help users retain control over their content.”

While the method is currently applicable to images, there are plans to expand it to text, music, and videos.

The method is still theoretical, with results validated in a controlled lab setting. The code is available on GitHub for academic use, and the team is seeking research partners from sectors including AI safety and ethics, defence, cybersecurity, academia, and more.

The paper, Provably Unlearnable Data Examples, was presented at the 2025 Network and Distributed System Security Symposium (NDSS), where it received the Distinguished Paper Award.

To collaborate or explore this technology further, you can contact the team.




CSIRO




            AIhub is supported by:


Related posts :



What’s coming up at #IJCAI2025?

  13 Aug 2025
Find out what's on the programme at the forthcoming International Joint Conference on Artificial Intelligence.

Interview with Flávia Carvalhido: Responsible multimodal AI

  12 Aug 2025
We hear from PhD student Flávia about her research, what inspired her to study AI, and her experience at AAAI 2025.

Using AI to speed up landslide detection

  11 Aug 2025
Researchers are using AI to speed up landslide detection following major earthquakes and extreme rainfall events.

IJCAI in Canada: 90-second pitches from the next generation of AI researchers

  08 Aug 2025
Find out about some of the interesting research taking place across Canada.

AI for the ancient world: how a new machine learning system can help make sense of Latin inscriptions

  08 Aug 2025
System retrieves textual and contextual parallels, makes use of visual details, and can generate speculative text to fill gaps in inscriptions.

Smart microscope captures aggregation of misfolded proteins

  07 Aug 2025
EPFL researchers have developed a microscope that can predict the onset of misfolded protein aggregation.

Interview with Shaghayegh (Shirley) Shajarian: Applying generative AI to computer networks

  05 Aug 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

How AI can help protect bees from dangerous parasites

  04 Aug 2025
Tiny but mighty, honeybees play a crucial role in our ecosystems, pollinating various plants and crops.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence