ΑΙhub.org
 

Deep learning-guided surface characterization for autonomous fabrication


by
13 May 2020



share this:
deep learning-assisted nanofabrication

The semiconductor industry as we know it is facing a critical roadblock that will lead to the end of Moore’s law. As transistors continue to shrink, quantum effects have a significant negative consequence on their operation. As such, the development of “beyond CMOS devices” has begun.

The push for devices that are cheaper, smaller, and faster has led to the use of scanning probe fabrication. One of the first examples of such a technique was IBM’s video “A boy and his atom”, where CO molecules were moved along a Cu surface using a sharp metallic tip. Limitations in the thermal stability of using metal surfaces for device fabrication lead to the development of hydrogen lithography. Using a scanning probe tip, hydrogen can be selectively removed from a silicon surface at atomic resolution (roughly 0.3 nm) providing thermal stability as well as compatibility with today’s enormous silicon-based transistor fabrication infrastructure.

Hydrogen lithography is used for the viable creation of such “beyond CMOS devices” as quantum computers, single atom transistors, and Binary Atomic Silicon Logic. The latter is pictured above where the absence of a hydrogen atom creates a quantum dot. These quantum dots are capable of representing binary information through the presence or absence of a single electron, drastically reducing the predicted energy consumption and spatial requirements of today’s modern transistors.

One of the leading issues with this fabrication technique is that at present, it is not scalable. The complexity of the surface requires constant monitoring to assess the quality of both the scanning probe tip and the silicon surface. By employing deep learning methods through the use of convolutional neutral networks (CNNs), we have been able to automate the entire fabrication process. Networks used for assessing tip quality must only distinguish between a “good” and “bad” tip which subsequently triggers an in situ tip reconditioning algorithm if needed. The surface quality is assessed using a greater number of factors, requiring a more complicated scheme.

A perfect surface consists of a perfectly flat silicon surface where each surface silicon atom bonds to a single hydrogen atom. In actuality there are numerous different configurations such as missing silicon atoms, additional hydrogens, or even residual water molecules, all of which make a specific lattice site unable to host a quantum dot. The formation of such defects can only be controlled to a certain degree, and ultimately depends on their thermodynamic probabilities of formation. By developing a CNN capable of semantic segmentation, we have been able to fully automate the surface quality assessment. Using seven different classes, the network is capable of distinguishing between defects that can alter the device behaviour, prevent the connection of additional devices, or simply prevent a single quantum dot from being fabricated. With a full understanding of where the defects exist on the surface, the most viable area of the surface can be calculated which allows for an automated hydrogen lithography process to fabricate these quantum dot devices in an effectively defect-free area.

Without the need for a single user to constantly monitor tip and surface quality, this allows for a fully scalable process where a single user could now monitor hundreds of machines providing a potential roadmap for the commercial fabrication of “beyond CMOS devices” using scanning probe systems.

Read the research articles

Deep learning-guided surface characterization for autonomous hydrogen lithography
Mohammad Rashidi, Jeremiah Croshaw, Kieran Mastel, Marcus Tamura, Hedieh Hosseinzadeh and Robert A Wolkow
Mach. Learn. Sci. Technol. 1, 025001 (2020)

Autonomous Scanning Probe Microscopy in situ Tip Conditioning through Machine Learning
Mohammad Rashidi and Robert A. Wolkow
ACS Nano 12, 5185–5189 (2018)




Jeremiah Croshaw is a PhD student at the University of Alberta specializing in condensed matter physics.
Jeremiah Croshaw is a PhD student at the University of Alberta specializing in condensed matter physics.




            AIhub is supported by:



Related posts :



#ECAI2025 – social media round up

  31 Oct 2025
Over the past week, researchers have gathered in Bologna for the 28th European Conference on Artificial Intelligence.
monthly digest

AIhub monthly digest: October 2025 – energy supply challenges, wearable sensors, and atomic-scale simulations

  29 Oct 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Winners of the #ECAI2025 outstanding paper awards announced

  28 Oct 2025
Find out which articless were selected as ECAI and PAIS outstanding papers.

The great wildebeest migration, seen from space: satellites and AI are helping count Africa’s wildlife

  27 Oct 2025
Researchers analysed satellite imagery of the Serengeti-Mara ecosystem from 2022 and 2023.

New AI tool helps match enzymes to substrates

  24 Oct 2025
A new machine learning-powered tool can help researchers determine how well an enzyme fits with a desired target.

#AIES2025 social media round-up

  24 Oct 2025
Find out what participants got up to at the Conference on Artificial Intelligence, Ethics, and Society.

Looking ahead to #ECAI2025

  23 Oct 2025
Find out what the programme has in store at the European Conference on AI.

Congratulations to the #AIES2025 best paper award winners!

  21 Oct 2025
The four winners of best paper prizes were announced during the opening ceremony at AIES.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence