ΑΙhub.org
 

Hot papers on arXiv from the past month: March 2021

by
01 April 2021



share this:
AIhub arXiv roundup

What’s hot on arXiv? Here are the most tweeted papers that were uploaded onto arXiv during March 2021.

Results are powered by Arxiv Sanity Preserver.


Minimum-Distortion Embedding
Akshay Agrawal, Alnur Ali, Stephen Boyd
Submitted to arXiv on: 3 March 2021

Abstract: We consider the vector embedding problem. We are given a finite set of items, with the goal of assigning a representative vector to each one, possibly under some constraints (such as the collection of vectors being standardized, i.e., have zero mean and unit covariance). We are given data indicating that some pairs of items are similar, and optionally, some other pairs are dissimilar. For pairs of similar items, we want the corresponding vectors to be near each other, and for dissimilar pairs, we want the corresponding vectors to not be near each other, measured in Euclidean distance. We formalize this by introducing distortion functions, defined for some pairs of the items. Our goal is to choose an embedding that minimizes the total distortion, subject to the constraints. We call this the minimum-distortion embedding (MDE) problem. The MDE framework is simple but general. It includes a wide variety of embedding methods, such as spectral embedding, principal component analysis, multidimensional scaling, dimensionality reduction methods (like Isomap and UMAP), force-directed layout, and others. It also includes new embeddings, and provides principled ways of validating historical and new embeddings alike. We develop a projected quasi-Newton method that approximately solves MDE problems and scales to large data sets. We implement this method in PyMDE, an open-source Python package. In PyMDE, users can select from a library of distortion functions and constraints or specify custom ones, making it easy to rapidly experiment with different embeddings. Our software scales to data sets with millions of items and tens of millions of distortion functions. To demonstrate our method, we compute embeddings for several real-world data sets, including images, an academic co-author network, US county demographic data, and single-cell mRNA transcriptomes.

460 tweets


Barlow Twins: Self-Supervised Learning via Redundancy Reduction
Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, Stéphane Deny
Submitted to arXiv on: 4 March 2021

Abstract: Self-supervised learning (SSL) is rapidly closing the gap with supervised methods on large computer vision benchmarks. A successful approach to SSL is to learn representations which are invariant to distortions of the input sample. However, a recurring issue with this approach is the existence of trivial constant representations. Most current methods avoid such collapsed solutions by careful implementation details. We propose an objective function that naturally avoids such collapse by measuring the cross-correlation matrix between the outputs of two identical networks fed with distorted versions of a sample, and making it as close to the identity matrix as possible. This causes the representation vectors of distorted versions of a sample to be similar, while minimizing the redundancy between the components of these vectors. The method is called Barlow Twins, owing to neuroscientist H. Barlow’s redundancy-reduction principle applied to a pair of identical networks. Barlow Twins does not require large batches nor asymmetry between the network twins such as a predictor network, gradient stopping, or a moving average on the weight updates. It allows the use of very high-dimensional output vectors. Barlow Twins outperforms previous methods on ImageNet for semi-supervised classification in the low-data regime, and is on par with current state of the art for ImageNet classification with a linear classifier head, and for transfer tasks of classification and object detection.

156 tweets


Generating Images with Sparse Representations
Charlie Nash, Jacob Menick, Sander Dieleman, Peter W. Battaglia
Submitted to arXiv on: 5 March 2021

Abstract: The high dimensionality of images presents architecture and sampling-efficiency challenges for likelihood-based generative models. Previous approaches such as VQ-VAE use deep autoencoders to obtain compact representations, which are more practical as inputs for likelihood-based models. We present an alternative approach, inspired by common image compression methods like JPEG, and convert images to quantized discrete cosine transform (DCT) blocks, which are represented sparsely as a sequence of DCT channel, spatial location, and DCT coefficient triples. We propose a Transformer-based autoregressive architecture, which is trained to sequentially predict the conditional distribution of the next element in such sequences, and which scales effectively to high resolution images. On a range of image datasets, we demonstrate that our approach can generate high quality, diverse images, with sample metric scores competitive with state of the art methods. We additionally show that simple modifications to our method yield effective image colorization and super-resolution models.

130 tweets


Generative Adversarial Transformers
Drew A. Hudson, C. Lawrence Zitnick
Submitted to arXiv on: 1 March 2021

Abstract: We introduce the GANsformer, a novel and efficient type of transformer, and explore it for the task of visual generative modeling. The network employs a bipartite structure that enables long-range interactions across the image, while maintaining computation of linearly efficiency, that can readily scale to high-resolution synthesis. It iteratively propagates information from a set of latent variables to the evolving visual features and vice versa, to support the refinement of each in light of the other and encourage the emergence of compositional representations of objects and scenes. In contrast to the classic transformer architecture, it utilizes multiplicative integration that allows flexible region-based modulation, and can thus be seen as a generalization of the successful StyleGAN network. We demonstrate the model’s strength and robustness through a careful evaluation over a range of datasets, from simulated multi-object environments to rich real-world indoor and outdoor scenes, showing it achieves state-of-the-art results in terms of image quality and diversity, while enjoying fast learning and better data-efficiency. Further qualitative and quantitative experiments offer us an insight into the model’s inner workings, revealing improved interpretability and stronger disentanglement, and illustrating the benefits and efficacy of our approach. An implementation of the model is available at this https URL.

90 tweets


Why Do Local Methods Solve Nonconvex Problems?
Tengyu Ma
Submitted to arXiv on: 24 March 2021

Abstract: Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue — optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.

80 tweets


Factors of Influence for Transfer Learning across Diverse Appearance Domains and Task Types
Thomas Mensink, Jasper Uijlings, Alina Kuznetsova, Michael Gygli, Vittorio Ferrari
Submitted to arXiv on: 24 March 2021

Abstract: Transfer learning enables to re-use knowledge learned on a source task to help learning a target task. A simple form of transfer learning is common in current state-of-the-art computer vision models, i.e. pre-training a model for image classification on the ILSVRC dataset, and then fine-tune on any target task. However, previous systematic studies of transfer learning have been limited and the circumstances in which it is expected to work are not fully understood. In this paper we carry out an extensive experimental exploration of transfer learning across vastly different image domains (consumer photos, autonomous driving, aerial imagery, underwater, indoor scenes, synthetic, close-ups) and task types (semantic segmentation, object detection, depth estimation, keypoint detection). Importantly, these are all complex, structured output tasks types relevant to modern computer vision applications. In total we carry out over 1200 transfer experiments, including many where the source and target come from different image domains, task types, or both. We systematically analyze these experiments to understand the impact of image domain, task type, and dataset size on transfer learning performance. Our study leads to several insights and concrete recommendations for practitioners.

78 tweets


Behavior From the Void: Unsupervised Active Pre-Training
Hao Liu, Pieter Abbeel
Submitted to arXiv on: 8 March 2021

Abstract: We introduce a new unsupervised pre-training method for reinforcement learning called APT, which stands for Active Pre-Training. APT learns behaviors and representations by actively searching for novel states in reward-free environments. The key novel idea is to explore the environment by maximizing a non-parametric entropy computed in an abstract representation space, which avoids the challenging density modeling and consequently allows our approach to scale much better in environments that have high-dimensional observations (e.g., image observations). We empirically evaluate APT by exposing task-specific reward after a long unsupervised pre-training phase. On Atari games, APT achieves human-level performance on 12 games and obtains highly competitive performance compared to canonical fully supervised RL algorithms. On DMControl suite, APT beats all baselines in terms of asymptotic performance and data efficiency and dramatically improves performance on tasks that are extremely difficult to train from scratch.

73 tweets


NeX: Real-time View Synthesis with Neural Basis Expansion
Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon Yenphraphai, Supasorn Suwajanakorn
Submitted to arXiv on: 9 March 2021

Abstract: We present NeX, a new approach to novel view synthesis based on enhancements of multiplane image (MPI) that can reproduce next-level view-dependent effects — in real time. Unlike traditional MPI that uses a set of simple RGBα planes, our technique models view-dependent effects by instead parameterizing each pixel as a linear combination of basis functions learned from a neural network. Moreover, we propose a hybrid implicit-explicit modeling strategy that improves upon fine detail and produces state-of-the-art results. Our method is evaluated on benchmark forward-facing datasets as well as our newly-introduced dataset designed to test the limit of view-dependent modeling with significantly more challenging effects such as rainbow reflections on a CD. Our method achieves the best overall scores across all major metrics on these datasets with more than 1000× faster rendering time than the state of the art. For real-time demos, visit this https URL.

48 tweets


Vision Transformers for Dense Prediction
René Ranftl, Alexey Bochkovskiy, Vladlen Koltun
Submitted to arXiv on: 24 March 2021

Abstract: We introduce dense vision transformers, an architecture that leverages vision transformers in place of convolutional networks as a backbone for dense prediction tasks. We assemble tokens from various stages of the vision transformer into image-like representations at various resolutions and progressively combine them into full-resolution predictions using a convolutional decoder. The transformer backbone processes representations at a constant and relatively high resolution and has a global receptive field at every stage. These properties allow the dense vision transformer to provide finer-grained and more globally coherent predictions when compared to fully-convolutional networks. Our experiments show that this architecture yields substantial improvements on dense prediction tasks, especially when a large amount of training data is available. For monocular depth estimation, we observe an improvement of up to 28% in relative performance when compared to a state-of-the-art fully-convolutional network. When applied to semantic segmentation, dense vision transformers set a new state of the art on ADE20K with 49.02% mIoU. We further show that the architecture can be fine-tuned on smaller datasets such as NYUv2, KITTI, and Pascal Context where it also sets the new state of the art. Our models are available at this https URL.

47 tweets


Pretrained Transformers as Universal Computation Engines
Kevin Lu, Aditya Grover, Pieter Abbeel, Igor Mordatch
Submitted to arXiv on: 9 March 2021

Abstract: We investigate the capability of a transformer pretrained on natural language to generalize to other modalities with minimal finetuning — in particular, without finetuning of the self-attention and feedforward layers of the residual blocks. We consider such a model, which we call a Frozen Pretrained Transformer (FPT), and study finetuning it on a variety of sequence classification tasks spanning numerical computation, vision, and protein fold prediction. In contrast to prior works which investigate finetuning on the same modality as the pretraining dataset, we show that pretraining on natural language improves performance and compute efficiency on non-language downstream tasks. In particular, we find that such pretraining enables FPT to generalize in zero-shot to these modalities, matching the performance of a transformer fully trained on these tasks.

45 tweets


MasakhaNER: Named Entity Recognition for African Languages
David Ifeoluwa Adelani, Jade Abbott, Graham Neubig, Daniel D’souza, Julia Kreutzer, Constantine Lignos, Chester Palen-Michel, Happy Buzaaba, Shruti Rijhwani, Sebastian Ruder, Stephen Mayhew, Israel Abebe Azime, Shamsuddeen Muhammad, Chris Chinenye Emezue, Joyce Nakatumba-Nabende, Perez Ogayo, Anuoluwapo Aremu, Catherine Gitau, Derguene Mbaye, Jesujoba Alabi, Seid Muhie Yimam, Tajuddeen Gwadabe, Ignatius Ezeani, Rubungo Andre Niyongabo, Jonathan Mukiibi, Verrah Otiende, Iroro Orife, Davis David, Samba Ngom, Tosin Adewumi, Paul Rayson, Mofetoluwa Adeyemi, Gerald Muriuki, Emmanuel Anebi, Chiamaka Chukwuneke, Nkiruka Odu, Eric Peter Wairagala, Samuel Oyerinde, Clemencia Siro, Tobius Saul Bateesa, Temilola Oloyede, Yvonne Wambui, Victor Akinode, Deborah Nabagereka, Maurice Katusiime, Ayodele Awokoya, Mouhamadane MBOUP, Dibora Gebreyohannes, Henok Tilaye, Kelechi Nwaike, Degaga Wolde, Abdoulaye Faye, Blessing Sibanda, Orevaoghene Ahia, Bonaventure F. P. Dossou, Kelechi Ogueji, Thierno Ibrahima DIOP, Abdoulaye Diallo, Adewale Akinfaderin, Tendai Marengereke, Salomey Osei
Submitted to arXiv on: 22 March 2021

Abstract: We take a step towards addressing the under-representation of the African continent in NLP research by creating the first large publicly available high-quality dataset for named entity recognition (NER) in ten African languages, bringing together a variety of stakeholders. We detail characteristics of the languages to help researchers understand the challenges that these languages pose for NER. We analyze our datasets and conduct an extensive empirical evaluation of state-of-the-art methods across both supervised and transfer learning settings. We release the data, code, and models in order to inspire future research on African NLP.

39 tweets




tags:


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



The Turing Lectures: Can we trust AI? – with Abeba Birhane

Abeba covers biases in data, the downstream impact on AI systems and our daily lives, how researchers are tackling the problem, and more.
21 November 2024, by

Dynamic faceted search: from haystack to highlight

The authors develop and compare three distinct methods for dynamic facet generation (DFG).
20 November 2024, by , and

Identification of hazardous areas for priority landmine clearance: AI for humanitarian mine action

In close collaboration with the UN and local NGOs, we co-develop an interpretable predictive tool to identify hazardous clusters of landmines.
19 November 2024, by

On the Road to Gundag(AI): Ensuring rural communities benefit from the AI revolution

We need to help regional small businesses benefit from AI while avoiding the harmful aspects.
18 November 2024, by

Making it easier to verify an AI model’s responses

By allowing users to clearly see data referenced by a large language model, this tool speeds manual validation to help users spot AI errors.
15 November 2024, by




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association