ΑΙhub.org
 

DeepMind and EMBL release database of predicted protein structures


by
23 July 2021



share this:

AF-Q8I3H7-F1
T-cell immunomodulatory protein homolog, from the AlphaFold Protein Structure Database, reproduced under a CC-BY-4.0 license.

DeepMind and the European Molecular Biology Laboratory (EMBL) have partnered to produce a database of predicted protein structure models.

The first release covers all ~20,000 proteins expressed in the human proteome, and the proteomes of 20 other biologically significant organisms, totalling over 350k structures. In the coming months they plan to expand the database to cover a large proportion of all catalogued proteins (the over 100 million in UniRef90).

The data is freely and openly available to the scientific community. You can access the AlphaFold Protein Structure Database here.

Back in November, DeepMind reported on their AlphaFold system that was able to predict, with high accuracy, a protein’s 3D structure from its amino acid sequence. We wrote about it here. This database is the next step in the journey, and the collaborators hope that this will be a useful tool for researchers and open up new avenues for scientific discovery.


Another example protein structure from the AlphaFold Protein Structure Database, reproduced under a CC-BY-4.0 license. This is Striatin-interacting protein 1. It plays a role in the regulation of cell morphology and cytoskeletal organization, required in the cortical actin filament dynamics and cell shape. AlphaFold produces a per-residue confidence score (pLDDT) between 0 and 100. The parts of the protein with a pLDDT score of above 90 are shown in dark blue, between 70 and 90 in light blue, between 50 and 70 in yellow, and below 50 in red.

In a recently published Nature article, Highly accurate protein structure prediction with AlphaFold, you can find out more about the neural network-based model and methodology that the AlphaFold team used. In this second Nature article, Highly accurate protein structure prediction for the human proteome, published yesterday, you can read more about the application of AlphaFold to the human proteome.

Find out more

AlphaFold Protein Structure Database
DeepMind blog post
EMBL-EBI news article
Highly accurate protein structure prediction with AlphaFold, Nature article.
Highly accurate protein structure prediction for the human proteome, Nature article.
DeepMind open source code
AlphaFold Colab



tags:


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



Better images of AI on book covers

  25 Nov 2025
We share insights from Chrissi Nerantzi on the decisions behind the cover of the open-sourced book ‘Learning with AI’, and reflect on the significance of book covers.

What is AI poisoning? A computer scientist explains

  24 Nov 2025
Poisoning is a growing problem in the world of AI – in particular, for large language models.

New AI technique sounding out audio deepfakes

  21 Nov 2025
Researchers discover a smarter way to detect audio deepfakes that is more accurate and adaptable to keep pace with evolving threats.

Learning robust controllers that work across many partially observable environments

  20 Nov 2025
Exploring designing controllers that perform reliably even when the environment may not be precisely known.

ACM SIGAI Autonomous Agents Award 2026 open for nominations

  19 Nov 2025
Nominations are solicited for the 2026 ACM SIGAI Autonomous Agents Research Award.

Interview with Mario Mirabile: trust in multi-agent systems

  18 Nov 2025
We meet ECAI Doctoral Consortium participant, Mario, to find out more about his research.

Review of “Exploring metaphors of AI: visualisations, narratives and perception”

and   17 Nov 2025
A curated research session at the Hype Studies Conference, “(Don’t) Believe the Hype?!” 10-12 September 2025, Barcelona.

Designing value-aligned autonomous vehicles: from moral dilemmas to conflict-sensitive design

  13 Nov 2025
Autonomous systems increasingly face value-laden choices. This blog post introduces the idea of designing “conflict-sensitive” autonomous traffic agents that explicitly recognise, reason about, and act upon competing ethical, legal, and social values.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence