ΑΙhub.org
 

Using AlphaFold to find complex protein knots

by
11 August 2022



share this:

complex protein knot with seven crossings (left) predicted by AlphaFold and a simplified representation (right)A complex protein knot with seven crossings (left) predicted by AlphaFold and a simplified representation (right). Image credit: Maarten Brems.

The question of how the chemical composition of a protein, the amino acid sequence, determines its 3D structure has been one of the biggest challenges in biophysics for more than half a century. This knowledge about the so-called “folding” of proteins is in great demand, as it contributes significantly to the understanding of various diseases and their treatment, among other things. For these reasons, Google’s DeepMind research team has developed AlphaFold, an artificial intelligence that predicts 3D structures.

A team consisting of researchers from Johannes Gutenberg University Mainz (JGU) and the University of California, Los Angeles, has now taken a closer look at these structures and examined them with respect to knots. We know knots primarily from shoelaces and cables, but they also occur on the nanoscale in our cells. Knotted proteins can not only be used to assess the quality of structure predictions but also raise important questions about folding mechanisms and the evolution of proteins.

The most complex knots as a test for AlphaFold

“We investigated numerically all – that is some 100,000 – predictions of AlphaFold for new protein knots,” said Maarten A. Brems, a PhD student in the group of Dr Peter Virnau at Mainz University. The goal was to identify rare, high-quality structures containing complex and previously unknown protein knots to provide a basis for experimental verification of AlphaFold’s predictions. The study not only discovered the most complex knotted protein to date but also the first composite knots in proteins. The latter can be thought of as two separate knots on the same string. “These new discoveries also provide insight into the evolutionary mechanisms behind such rare proteins”, added Robert Runkel, a theoretical physicist also involved in the project. The results of this study were recently published in Protein Science.

Dr Peter Virnau is pleased with the results: “We have already established a collaboration with our colleague Dr Todd Yeates from UCLA to confirm these structures experimentally. This line of research will shape the biophysics community’s view of artificial intelligence – and we are fortunate to have an expert like Todd Yeates involved.”

Read the research paper

AlphaFold predicts the most complex protein knot and composite protein knots
Maarten A. Brems, Robert Runkel, Todd O. Yeates, Peter Virnau




Johannes Gutenberg Universität Mainz




            AIhub is supported by:


Related posts :



5 questions schools and universities should ask before they purchase AI tech products

Every few years, an emerging technology shows up at the doorstep of schools and universities promising to transform education.
01 May 2024, by

AIhub monthly digest: April 2024 – explainable AI, access to compute, and noughts and crosses

Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.
30 April 2024, by

The Machine Ethics podcast: Good tech with Eleanor Drage and Kerry McInerney

In this episode, Ben chats Eleanor Drage and Kerry McInerney about good tech.
29 April 2024, by

AIhub coffee corner: Open vs closed science

The AIhub coffee corner captures the musings of AI experts over a short conversation.
26 April 2024, by

Are emergent abilities of large language models a mirage? – Interview with Brando Miranda

We hear about work that won a NeurIPS 2023 outstanding paper award.
25 April 2024, by

We built an AI tool to help set priorities for conservation in Madagascar: what we found

Daniele Silvestro has developed a tool that can help identify conservation and restoration priorities.
24 April 2024, by




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association