ΑΙhub.org
 

Decoding brain activity into speech

by
01 May 2019



share this:


A recent paper in Nature reports on a new technology created by UC San Francisco neuroscientists that translates neural activity into speech. Although the technology was trialled on participants with intact speech, the hope is that it could be transformative in the future for people who are unable to communicate as a result of neurological impairments.

The researchers asked five volunteers being treated at the UCSF Epilepsy Center, with electrodes temporarily implanted in their brains, to read several hundred sentences aloud while their brain activity was recorded.

Based on the audio recordings of participants’ voices, the researchers used linguistic principles to reverse engineer the vocal tract movements needed to produce those sounds: pressing the lips together, tightening vocal cords, shifting the tip of the tongue to the roof of the mouth, then relaxing it, and so on.

This detailed mapping of sound to anatomy allowed the scientists to create a realistic virtual vocal tract for each participant that could be controlled by their brain activity. This included two neural networks: a decoder that transforms brain activity patterns produced during speech into movements of the virtual vocal tract, and a synthesizer that converts these vocal tract movements into a synthetic approximation of the participant’s voice.

A video of the resulting brain-to-speech synthesis can be found below.

You can read the UC San Francisco press release on which this news highlight is based here.

Reference
Anumanchipalli, G. K., Chartier, J., & Chang, E. F. (2019). Speech synthesis from neural decoding of spoken sentences. Nature, 568(7753), 493.




AIhub Editor is dedicated to free high-quality information about AI.
AIhub Editor is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



AIhub monthly digest: October 2021 – life on land, foundation models and Beethoven’s 10th

Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.
27 October 2021, by

Unsolved ML safety problems

We provide a new roadmap for ML Safety and aim to refine the technical problems that the field needs to address.
26 October 2021, by

How to avoid hype when promoting your AI research

The AIhub trustees have compiled a handy guide to help you avoid hype when communicating your research.
25 October 2021, by

The Machine Ethics Podcast: AI readiness with Tim El-Sheikh

In this episode, Ben chats with Tim El-Sheikh about ethical AI as the smarter AI, the importance of a business AI strategy, getting data ready, and more.
22 October 2021, by

Join our team of AIhub ambassadors!

We are looking for people to join us as AIhub ambassadors.
21 October 2021, by

Interview with Lily Xu – applying machine learning to the prevention of illegal wildlife poaching

Lily Xu tells us about her work applying machine learning and game theory to wildlife conservation.
20 October 2021, by





©2021 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association