ΑΙhub.org
 

The Partnership on AI launches initiative to enhance machine learning transparency

by
01 May 2019



share this:

The Partnership on AI has announced an initiative to define best practices for transparency in machine learning.

The initiative aims to produce best practices around the considerations, reflections, and documentation necessary to prompt a thoughtful process of creating and understanding machine learning systems that account for how the technology impacts all parties—including the public at large, differentially affected communities, policymakers, and users.

The effort is called ABOUT ML for “Annotation and Benchmarking on Understanding and Transparency of Machine learning Lifecycles”. ABOUT ML will kick off with the publication of “draft v0” recommendations on ML lifecycle transparency this July, followed by successive drafts integrating lessons learned and feedback from the community.

You can read more about ABOUT ML on the Partnership on AI blog.




AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



Geometric deep learning for protein sequence design

Researchers have developed an AI-driven model designed to predict protein sequences from backbone scaffolds.
10 September 2024, by

How to evaluate jailbreak methods: a case study with the StrongREJECT benchmark

Providing a more accurate assessment of jailbreak effectiveness.
09 September 2024, by

CLAIRE AQuA: AI for citizens

Watch the recording of the latest CLAIRE All Questions Answered session.
06 September 2024, by

Developing a system for real-time sensing of flooded roads

Research fuses multiple data sources with AI model for enhanced sensing of road conditions.
05 September 2024, by

Forthcoming machine learning and AI seminars: September 2024 edition

A list of free-to-attend AI-related seminars that are scheduled to take place between 2 September and 31 October 2024.
02 September 2024, by

Causal inference under incentives: an annotated reading list

This annotated reading list is intended to serve as a brief summary of work on causal inference in the presence of strategic agents.
30 August 2024, by




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association