ΑΙhub.org
 

#RoboCup2019 @Home finals

by
08 July 2019



share this:


For the final stage of the @Home competition, the top 2 teams were selected in each of the sub-leagues (domestic, social and open platforms) to perform demos inside a 10 minute window followed by 5 minutes of questions from the judges. The scoring judges were comprised by trustee board members, external judges and members of the technical and organizing committees.

Social Standard Platform League
Uchile (2nd place) and UTS (1st place)

Chile showed an episodic memory demo based on their ongoing research, while UTS showed pepper as a social robot interacting with the “owner of the house” navigating environments and searching the house for the owner’s daughter.

Domestic Standard Platform League
Tidyboy (2nd place) and TUe (1st place)

Tidyboy did a demo about a manipulation task where the robot opened a cabinet door to get a juice, and then a snack from the kitchen table. It then placed both in a wheeled cart that it grabbed and took to the livingroom for a house guest.

TUe first showed how the robot understands pointing at objects in the room related to their research on human behavior recognition. Afterwards, they did a party demo where the robot recognized people in the livingroom and interfaced with a periscope app on a phone to get people’s drink orders. The robot then proceeded to navigate to the fridge, pushing a cart, to bring back multiple drinks at once and asked help from a bartender to get drinks from the fridge

Open Platform League
Pumas (2nd place) and Homer (1st place)

Pumas’ demo included both their robots from OPL and DSPL and showed how the robots can collaborate with tasks using cloud services like Alexa in social tasks like the robot party host.

As part of Homer’s final demo, they showed links to their ongoing research using their two open-platform robots about autonomous mapping, and adaptive learning from demonstration. As their last task of the demo they showcased the robot cleaning the toilet as part of a manipulation task that involves the use of contact forces.




Maru Cabrera is Research Associate at University of Washington.
Maru Cabrera is Research Associate at University of Washington.




            AIhub is supported by:


Related posts :



DataLike: Interview with Tẹjúmádé Àfọ̀njá

"I place an emphasis on wellness and meticulously plan my schedule to ensure I can make meaningful contributions to what's important to me."

Beyond the mud: Datasets, benchmarks, and methods for computer vision in off-road racing

Off-road motorcycle racing poses unique challenges that push the boundaries of what existing computer vision systems can handle
17 April 2024, by

Interview with Bálint Gyevnár: Creating explanations for AI-based decision-making systems

PhD student and AAAI/SIGAI Doctoral Consortium participant tells us about his research.
16 April 2024, by

2024 AI Index report published

Read the latest edition of the AI Index Report which tracks and visualises data related to AI.
15 April 2024, by

#AAAI2024 workshops round-up 4: eXplainable AI approaches for deep reinforcement learning, and responsible language models

We hear from the organisers of two workshops at AAAI2024 and find out the key takeaways from their events.
12 April 2024, by

Deep learning-powered system maps corals in 3D

A system developed at EPFL can produce 3D maps of coral reefs from camera footage in just a few minutes.
11 April 2024, by




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association