ΑΙhub.org
 

Making sense of vision and touch: #ICRA2019 best paper award video and interview


by
28 July 2019



share this:

PhD candidate Michelle A. Lee from the Stanford AI Lab won the best paper award at ICRA 2019 with her work “Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks”. You can read the paper on arxiv here.

Audrow Nash was there to capture her pitch.

And here’s the official video about the work.

Full reference
Lee, Michelle A., Yuke Zhu, Krishnan Srinivasan, Parth Shah, Silvio Savarese, Li Fei-Fei, Animesh Garg, and Jeannette Bohg. “Making sense of vision and touch: Self-supervised learning of multimodal representations for contact-rich tasks.” arXiv preprint arXiv:1810.10191 (2018).




AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:



Related posts :



Memory traces in reinforcement learning

  12 Sep 2025
Onno writes about work presented at ICML 2025, introducing an alternative memory framework.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Interview with Yezi Liu: Trustworthy and efficient machine learning

  10 Sep 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

Advanced AI models are not always better than simple ones

  09 Sep 2025
Researchers have developed Systema, a new tool to evaluate how well AI models work when predicting the effects of genetic perturbations.

The Machine Ethics podcast: Autonomy AI with Adir Ben-Yehuda

This episode Adir and Ben chat about AI automation for frontend web development, where human-machine interface could be going, allowing an LLM to optimism itself, job displacement, vibe coding and more.

Using generative AI, researchers design compounds that can kill drug-resistant bacteria

  05 Sep 2025
The team used two different AI approaches to design novel antibiotics, including one that showed promise against MRSA.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

How the internet and its bots are sabotaging scientific research

  03 Sep 2025
What most people have failed to fully realise is that internet research has brought along risks of data corruption or impersonation.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence