ΑΙhub.org
 

Making sense of vision and touch: #ICRA2019 best paper award video and interview

by
28 July 2019



share this:

PhD candidate Michelle A. Lee from the Stanford AI Lab won the best paper award at ICRA 2019 with her work “Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks”. You can read the paper on arxiv here.

Audrow Nash was there to capture her pitch.

And here’s the official video about the work.

Full reference
Lee, Michelle A., Yuke Zhu, Krishnan Srinivasan, Parth Shah, Silvio Savarese, Li Fei-Fei, Animesh Garg, and Jeannette Bohg. “Making sense of vision and touch: Self-supervised learning of multimodal representations for contact-rich tasks.” arXiv preprint arXiv:1810.10191 (2018).




AIhub Editor is dedicated to free high-quality information about AI.
AIhub Editor is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



AIhub monthly digest: October 2021 – life on land, foundation models and Beethoven’s 10th

Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.
27 October 2021, by

Unsolved ML safety problems

We provide a new roadmap for ML Safety and aim to refine the technical problems that the field needs to address.
26 October 2021, by

How to avoid hype when promoting your AI research

The AIhub trustees have compiled a handy guide to help you avoid hype when communicating your research.
25 October 2021, by

The Machine Ethics Podcast: AI readiness with Tim El-Sheikh

In this episode, Ben chats with Tim El-Sheikh about ethical AI as the smarter AI, the importance of a business AI strategy, getting data ready, and more.
22 October 2021, by

Join our team of AIhub ambassadors!

We are looking for people to join us as AIhub ambassadors.
21 October 2021, by

Interview with Lily Xu – applying machine learning to the prevention of illegal wildlife poaching

Lily Xu tells us about her work applying machine learning and game theory to wildlife conservation.
20 October 2021, by





©2021 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association