ΑΙhub.org
 

#IJCAI2019 mini-interviews – Claus Aranha from University of Tsukuba


by
14 August 2019



share this:

Meet Claus Aranha, Assistant Professor at the University of Tsukuba, Center of Artificial Intelligence Research (C-AIR).

What are you presenting at IJCAI?
I am organizing the werewolf track ANAC Competition.

 

Can you tell me more about ANAC?
ANAC stands for Automated Agent Negotiation Competition<sup>1</sup>. It is a competition where AI Agents negotiate with each other and/or humans. We have 6 leagues this year – Supply Chain Management, Werewolf (a social party game), Diplomacy (a board game), Human-Agent League, Agent-Agent League: Agent Negotiation with Partial Preferences and the GENIUS league.

 

What is the real world impact of agents negotiating with each other?
Take for example the Supply Chain Management (SCM) league. Right now in the SCM industry many stakeholders – from people who sell the raw material, to factories which produce goods, to shops who sell them are involved. Each one has their preferences on what they wish to get out of the deal and what they are ready to compromise on. They have to coordinate (i.e. negotiate) with each other all the time for timelines, prices, quantities, etc. It is a cumbersome and cognitively heavy job! 

Imagine a group of AI agents representing each stakeholder does this for you. Wouldn’t things become easier?

 

You said something about the werewolf track. Could you say more?
It is a social party game where agents are supposed to find who the werewolf is<sup>2</sup> in a setting where agents lie to each other and/or hide the truth about themselves. How can an agent deal with other agents who behave this way while the agent itself is also deceiving other agents — It is a hard challenge!

We had 90 teams this year out of which 70 sent an agent to the competition. We have 15 finalists and the top three will be discussed tomorrow (August 15)! Keep an eye out 🙂

 

How can I get involved?
Check out the AI Wolf project page3. You can also get some sample code here – https://github.com/caranha/AIWolfCompo

 

1http://web.tuat.ac.jp/~katfuji/ANAC2019/

2https://en.wikipedia.org/wiki/Mafia_(party_game)

3http://aiwolf.org/en/




Rahul Divekar is a PhD Candidate at the Department of Computer Science at Rensselaer Polytechnic Institute.
Rahul Divekar is a PhD Candidate at the Department of Computer Science at Rensselaer Polytechnic Institute.




            AIhub is supported by:


Related posts :



Generative AI is already being used in journalism – here’s how people feel about it

  21 Feb 2025
New report draws on three years of interviews and focus group research into generative AI and journalism

Charlotte Bunne on developing AI-based diagnostic tools

  20 Feb 2025
To advance modern medicine, EPFL researchers are developing AI-based diagnostic tools. Their goal is to predict the best treatment a patient should receive.

What’s coming up at #AAAI2025?

  19 Feb 2025
Find out what's on the programme at the 39th Annual AAAI Conference on Artificial Intelligence

An introduction to science communication at #AAAI2025

  18 Feb 2025
Find out more about our forthcoming training session at AAAI on 26 February 2025.

The Good Robot podcast: Critiquing tech through comedy with Laura Allcorn

  17 Feb 2025
Eleanor and Kerry chat to Laura Allcorn about how she pairs humour and entertainment with participatory public engagement to raise awareness of AI use cases

Interview with Kayla Boggess: Explainable AI for more accessible and understandable technologies

  14 Feb 2025
Hear from Doctoral Consortium participant Kayla about her work focussed on explanations for multi-agent reinforcement learning, and human-centric explanations.

The Machine Ethics podcast: Running faster with Enrico Panai

This episode, Ben chats to Enrico Panai about different aspects of AI ethics.

Diffusion model predicts 3D genomic structures

  12 Feb 2025
A new approach predicts how a specific DNA sequence will arrange itself in the cell nucleus.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association