ΑΙhub.org
 

COVID-19 Open Research Dataset (CORD-19) now available for researchers


by
17 March 2020



share this:
CORD-19 dataset

On 16 March the COVID-19 Open Research Dataset (CORD-19) was released. This comprises an open-source, machine-readable collection of scholarly literature covering COVID-19, SARS-CoV-2, and the Coronavirus group. This free resource contains over 29,000 relevant scholarly articles, including over 13,000 with full text.

The release of the dataset is a result of a collaborate effort between the Allen Institute for AI, Chan Zuckerberg Initiative, Georgetown University, Microsoft, and the US National Library of Medicine (NLM). This resource is intended to mobilize researchers to apply recent advances in natural language processing to generate new insights in support of the fight against this infectious disease.

The CORD-19 dataset is available on the Allen Institute’s SemanticScholar.org website and will continue to be updated as new research is published in archival services and peer-reviewed publications.

Kaggle is hosting a challenge using this dataset and at present there are 10 initial tasks for people to work on. These key scientific questions have been drawn from the National Academies of Sciences, Engineering, and Medicine’s research topics and the World Health Organization’s R&D Blueprint for COVID-19.

Links:

You can access the official webpage for CORD-19 here .
Find the kaggle challenge page here.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



Machine learning for atomic-scale simulations: balancing speed and physical laws

How much underlying physics can we safely “shortcut” without breaking a simulation?

Policy design for two-sided platforms with participation dynamics: Interview with Haruka Kiyohara

  09 Oct 2025
Studying the long-term impacts of decision-making algorithms on two-sided platforms such as e-commerce or music streaming apps.

The Machine Ethics podcast: What excites you about AI? Vol.2

This is a bonus episode looking back over answers to our question: What excites you about AI?

Interview with Janice Anta Zebaze: using AI to address energy supply challenges

  07 Oct 2025
Find out more about research combining renewable energy systems, tribology, and artificial intelligence.

How does AI affect how we learn? A cognitive psychologist explains why you learn when the work is hard

  06 Oct 2025
Early research is only beginning to scratch the surface of how AI technology will truly affect learning and cognition in the long run.

Interview with Zahra Ghorrati: developing frameworks for human activity recognition using wearable sensors

  03 Oct 2025
Find out more about research developing scalable and adaptive deep learning frameworks.

Diffusion beats autoregressive in data-constrained settings

  03 Oct 2025
How can we trade off more compute for less data?

Forthcoming machine learning and AI seminars: October 2025 edition

  02 Oct 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 3 October and 30 November 2025.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence