ΑΙhub.org
 

COVID-19 Open Research Dataset (CORD-19) now available for researchers


by
17 March 2020



share this:
CORD-19 dataset

On 16 March the COVID-19 Open Research Dataset (CORD-19) was released. This comprises an open-source, machine-readable collection of scholarly literature covering COVID-19, SARS-CoV-2, and the Coronavirus group. This free resource contains over 29,000 relevant scholarly articles, including over 13,000 with full text.

The release of the dataset is a result of a collaborate effort between the Allen Institute for AI, Chan Zuckerberg Initiative, Georgetown University, Microsoft, and the US National Library of Medicine (NLM). This resource is intended to mobilize researchers to apply recent advances in natural language processing to generate new insights in support of the fight against this infectious disease.

The CORD-19 dataset is available on the Allen Institute’s SemanticScholar.org website and will continue to be updated as new research is published in archival services and peer-reviewed publications.

Kaggle is hosting a challenge using this dataset and at present there are 10 initial tasks for people to work on. These key scientific questions have been drawn from the National Academies of Sciences, Engineering, and Medicine’s research topics and the World Health Organization’s R&D Blueprint for COVID-19.

Links:

You can access the official webpage for CORD-19 here .
Find the kaggle challenge page here.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



Half of UK novelists believe AI is likely to replace their work entirely

  24 Dec 2025
A new report asks literary creatives about their views on generative AI tools and LLM-authored books.

RL without TD learning

  23 Dec 2025
This post introduces a reinforcement learning algorithm based on a divide and conquer paradigm.

AIhub interview highlights 2025

  22 Dec 2025
Join us for a look back at some of the interviews we've conducted with members of the AI community.

Identifying patterns in insect scents using machine learning

  19 Dec 2025
Scientists will use machine learning to predict what types of molecules interact with insect olfactory receptors.

2025 AAAI / ACM SIGAI Doctoral Consortium interviews compilation

  18 Dec 2025
We collate our interviews with the 2025 cohort of doctoral consortium participants.

A backlash against AI imagery in ads may have begun as brands promote ‘human-made’

  17 Dec 2025
In a wave of new ads, brands like Heineken, Polaroid and Cadbury have started celebrating their work as “human-made”.

AIhub blog post highlights 2025

  16 Dec 2025
As the year draws to a close, we take a look back at some of our favourite blog posts.

Using machine learning to track greenhouse gas emissions

  15 Dec 2025
PhD candidate Julia Wąsala searches for greenhouse gas emissions in satellite data.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence