ΑΙhub.org
 

COVID-19 Open Research Dataset (CORD-19) now available for researchers

by
17 March 2020



share this:
CORD-19 dataset

On 16 March the COVID-19 Open Research Dataset (CORD-19) was released. This comprises an open-source, machine-readable collection of scholarly literature covering COVID-19, SARS-CoV-2, and the Coronavirus group. This free resource contains over 29,000 relevant scholarly articles, including over 13,000 with full text.

The release of the dataset is a result of a collaborate effort between the Allen Institute for AI, Chan Zuckerberg Initiative, Georgetown University, Microsoft, and the US National Library of Medicine (NLM). This resource is intended to mobilize researchers to apply recent advances in natural language processing to generate new insights in support of the fight against this infectious disease.

The CORD-19 dataset is available on the Allen Institute’s SemanticScholar.org website and will continue to be updated as new research is published in archival services and peer-reviewed publications.

Kaggle is hosting a challenge using this dataset and at present there are 10 initial tasks for people to work on. These key scientific questions have been drawn from the National Academies of Sciences, Engineering, and Medicine’s research topics and the World Health Organization’s R&D Blueprint for COVID-19.

Links:

You can access the official webpage for CORD-19 here .
Find the kaggle challenge page here.




Lucy Smith , Managing Editor for AIhub.
Lucy Smith , Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



Keeping learning-based control safe by regulating distributional shift

We propose a new framework to reason about the safety of a learning-based controller with respect to its training distribution.
30 September 2022, by

Bipedal robot achieves Guinness World Record in 100 metres

Cassie the robot, developed at Oregon State University, records the fastest 100 metres by a bipedal robot.
29 September 2022, by

#IJCAI2022 distinguished paper – Plurality veto: A simple voting rule achieving optimal metric distortion

How can we create a voting system that best represents the preferences of the voters?
28 September 2022, by

AIhub monthly digest: September 2022 – environmental conservation, retrosynthesis, and RoboCup

Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.
27 September 2022, by

The Machine Ethics Podcast: Rights, trust and ethical choice with Ricardo Baeza-Yates

Host Ben Byford chats to Ricardo Baeza-Yates about responsible AI, the importance of AI governance, questioning people's intent to create AGI, and more.
26 September 2022, by

Recurrent model-free RL can be a strong baseline for many POMDPs

Considering an approach for dealing with realistic problems with noise and incomplete information.
23 September 2022, by





©2021 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association