ΑΙhub.org
 

Researchers use artificial intelligence to design supercompressible metamaterial


by
18 March 2020



share this:
Bessa-Delft-supercompressible material

Researchers at TU Delft have developed a new material using Bayesian machine learning algorithms. Using the results of their computational simulations they have fabricated two designs at different length scales that transform polymers into supercompressible metamaterials.

Miguel Bessa, Assistant Professor in Materials Science and Engineering at TU Delft, got the inspiration for this research project during his time at the California Institute of Technology where, in a corner of the Space Structures Lab, he noticed a satellite structure that could open long solar sails from a very small package. He wondered if it would be possible to design a highly compressible, yet strong, material that could be compressed to a small fraction of its original volume.

In general, the next generation of materials needs to be adaptive, multi-purpose and tunable. This can be achieved by structure-dominated materials (metamaterials) that explore new geometries to achieve unprecedented properties and functionality. “However, metamaterial design has relied on extensive experimentation and a trial-and-error approach”, explains Bessa. “We argue in favour of inverting the process by using machine learning for exploring new design possibilities, while reducing experimentation to an absolute minimum.”

“We follow a computational data-driven approach for exploring a new metamaterial concept and adapting it to different target properties, choice of base materials, length-scales, and manufacturing processes.” Guided by machine learning, Bessa fabricated two designs at different length scales that transform brittle polymers into lightweight, recoverable and super-compressible metamaterials. The macro-scale design is tuned for maximum compressibility, while the micro-scale is designed for high strength and stiffness.

Machine learning offers scientists the opportunity to shift the design process from experimentally-guided investigations to computationally data-driven ones. Machine learning algorithms can find areas of the design space that people had never considered before. There is certainly much promise in this space, as Bessa concludes: “Data-driven science will revolutionize the way we reach new discoveries, and I can’t wait to see what the future will bring us.”

Read the research article in full

Bayesian Machine Learning in Metamaterial Design: Fragile Becomes Supercompressible
Miguel A. Bessa, Piotr Glowacki and Michael Houlder
Advanced Materials (2019)

The code behind the discovery

The team have made the code accessible to all, and you can check it out here.




Miguel Bessa is an assistant professor at TU Delft.
Miguel Bessa is an assistant professor at TU Delft.




            AIhub is supported by:



Related posts :



AAAI presidential panel – AI perception versus reality video discussion

  02 Jan 2026
Watch the second panel discussion in this series from AAAI.

More than half of new articles on the internet are being written by AI

  31 Dec 2025
The line between human and machine authorship is blurring, particularly as it’s become increasingly difficult to tell whether something was written by a person or AI.
monthly digest

2025 digest of digests

  30 Dec 2025
We look back through the archives of our monthly digests to pick out some highlights from the year.
monthly digest

AIhub monthly digest: December 2025 – studying bias in AI-based recruitment tools, an image dataset for ethical AI benchmarking, and end of year com

  29 Dec 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Half of UK novelists believe AI is likely to replace their work entirely

  24 Dec 2025
A new report asks literary creatives about their views on generative AI tools and LLM-authored books.

RL without TD learning

  23 Dec 2025
This post introduces a reinforcement learning algorithm based on a divide and conquer paradigm.

AIhub interview highlights 2025

  22 Dec 2025
Join us for a look back at some of the interviews we've conducted with members of the AI community.

Identifying patterns in insect scents using machine learning

  19 Dec 2025
Scientists will use machine learning to predict what types of molecules interact with insect olfactory receptors.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence