ΑΙhub.org
 

Researchers use artificial intelligence to design supercompressible metamaterial


by
18 March 2020



share this:
Bessa-Delft-supercompressible material

Researchers at TU Delft have developed a new material using Bayesian machine learning algorithms. Using the results of their computational simulations they have fabricated two designs at different length scales that transform polymers into supercompressible metamaterials.

Miguel Bessa, Assistant Professor in Materials Science and Engineering at TU Delft, got the inspiration for this research project during his time at the California Institute of Technology where, in a corner of the Space Structures Lab, he noticed a satellite structure that could open long solar sails from a very small package. He wondered if it would be possible to design a highly compressible, yet strong, material that could be compressed to a small fraction of its original volume.

In general, the next generation of materials needs to be adaptive, multi-purpose and tunable. This can be achieved by structure-dominated materials (metamaterials) that explore new geometries to achieve unprecedented properties and functionality. “However, metamaterial design has relied on extensive experimentation and a trial-and-error approach”, explains Bessa. “We argue in favour of inverting the process by using machine learning for exploring new design possibilities, while reducing experimentation to an absolute minimum.”

“We follow a computational data-driven approach for exploring a new metamaterial concept and adapting it to different target properties, choice of base materials, length-scales, and manufacturing processes.” Guided by machine learning, Bessa fabricated two designs at different length scales that transform brittle polymers into lightweight, recoverable and super-compressible metamaterials. The macro-scale design is tuned for maximum compressibility, while the micro-scale is designed for high strength and stiffness.

Machine learning offers scientists the opportunity to shift the design process from experimentally-guided investigations to computationally data-driven ones. Machine learning algorithms can find areas of the design space that people had never considered before. There is certainly much promise in this space, as Bessa concludes: “Data-driven science will revolutionize the way we reach new discoveries, and I can’t wait to see what the future will bring us.”

Read the research article in full

Bayesian Machine Learning in Metamaterial Design: Fragile Becomes Supercompressible
Miguel A. Bessa, Piotr Glowacki and Michael Houlder
Advanced Materials (2019)

The code behind the discovery

The team have made the code accessible to all, and you can check it out here.




Miguel Bessa is an assistant professor at TU Delft.
Miguel Bessa is an assistant professor at TU Delft.




            AIhub is supported by:


Related posts :



Introducing the NASA Onboard Artificial Intelligence Research (OnAIR) platform: an interview with Evana Gizzi

  03 Jul 2025
Find out about the OnAIR platform, some of the particular challenges of deploying AI-based solutions in space, and how the tool has been used so far.

An interview with Nicolai Ommer: the RoboCupSoccer Small Size League

  01 Jul 2025
We caught up with Nicolai to find out more about the Small Size League, how the auto referees work, and how teams use AI.

Forthcoming machine learning and AI seminars: July 2025 edition

  30 Jun 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 1 July and 31 August 2025.
monthly digest

AIhub monthly digest: June 2025 – gearing up for RoboCup 2025, privacy-preserving models, and mitigating biases in LLMs

  26 Jun 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

RoboCupRescue: an interview with Adam Jacoff

  25 Jun 2025
Find out what's new in the RoboCupRescue League this year.

Making optimal decisions without having all the cards in hand

Read about research which won an outstanding paper award at AAAI 2025.

Exploring counterfactuals in continuous-action reinforcement learning

  20 Jun 2025
Shuyang Dong writes about her work that will be presented at IJCAI 2025.

What is vibe coding? A computer scientist explains what it means to have AI write computer code − and what risks that can entail

  19 Jun 2025
Until recently, most computer code was written, at least originally, by human beings. But with the advent of GenAI, that has begun to change.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence