ΑΙhub.org
 

Researchers use artificial intelligence to design supercompressible metamaterial

by
18 March 2020



share this:
Bessa-Delft-supercompressible material

Researchers at TU Delft have developed a new material using Bayesian machine learning algorithms. Using the results of their computational simulations they have fabricated two designs at different length scales that transform polymers into supercompressible metamaterials.

Miguel Bessa, Assistant Professor in Materials Science and Engineering at TU Delft, got the inspiration for this research project during his time at the California Institute of Technology where, in a corner of the Space Structures Lab, he noticed a satellite structure that could open long solar sails from a very small package. He wondered if it would be possible to design a highly compressible, yet strong, material that could be compressed to a small fraction of its original volume.

In general, the next generation of materials needs to be adaptive, multi-purpose and tunable. This can be achieved by structure-dominated materials (metamaterials) that explore new geometries to achieve unprecedented properties and functionality. “However, metamaterial design has relied on extensive experimentation and a trial-and-error approach”, explains Bessa. “We argue in favour of inverting the process by using machine learning for exploring new design possibilities, while reducing experimentation to an absolute minimum.”

“We follow a computational data-driven approach for exploring a new metamaterial concept and adapting it to different target properties, choice of base materials, length-scales, and manufacturing processes.” Guided by machine learning, Bessa fabricated two designs at different length scales that transform brittle polymers into lightweight, recoverable and super-compressible metamaterials. The macro-scale design is tuned for maximum compressibility, while the micro-scale is designed for high strength and stiffness.

Machine learning offers scientists the opportunity to shift the design process from experimentally-guided investigations to computationally data-driven ones. Machine learning algorithms can find areas of the design space that people had never considered before. There is certainly much promise in this space, as Bessa concludes: “Data-driven science will revolutionize the way we reach new discoveries, and I can’t wait to see what the future will bring us.”

Read the research article in full

Bayesian Machine Learning in Metamaterial Design: Fragile Becomes Supercompressible
Miguel A. Bessa, Piotr Glowacki and Michael Houlder
Advanced Materials (2019)

The code behind the discovery

The team have made the code accessible to all, and you can check it out here.




Miguel Bessa is an assistant professor at TU Delft.
Miguel Bessa is an assistant professor at TU Delft.




            AIhub is supported by:


Related posts :



Geometric deep learning for protein sequence design

Researchers have developed an AI-driven model designed to predict protein sequences from backbone scaffolds.
10 September 2024, by

How to evaluate jailbreak methods: a case study with the StrongREJECT benchmark

Providing a more accurate assessment of jailbreak effectiveness.
09 September 2024, by

CLAIRE AQuA: AI for citizens

Watch the recording of the latest CLAIRE All Questions Answered session.
06 September 2024, by

Developing a system for real-time sensing of flooded roads

Research fuses multiple data sources with AI model for enhanced sensing of road conditions.
05 September 2024, by

Forthcoming machine learning and AI seminars: September 2024 edition

A list of free-to-attend AI-related seminars that are scheduled to take place between 2 September and 31 October 2024.
02 September 2024, by

Causal inference under incentives: an annotated reading list

This annotated reading list is intended to serve as a brief summary of work on causal inference in the presence of strategic agents.
30 August 2024, by




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association