ΑΙhub.org
 

Researchers use artificial intelligence to design supercompressible metamaterial


by
18 March 2020



share this:
Bessa-Delft-supercompressible material

Researchers at TU Delft have developed a new material using Bayesian machine learning algorithms. Using the results of their computational simulations they have fabricated two designs at different length scales that transform polymers into supercompressible metamaterials.

Miguel Bessa, Assistant Professor in Materials Science and Engineering at TU Delft, got the inspiration for this research project during his time at the California Institute of Technology where, in a corner of the Space Structures Lab, he noticed a satellite structure that could open long solar sails from a very small package. He wondered if it would be possible to design a highly compressible, yet strong, material that could be compressed to a small fraction of its original volume.

In general, the next generation of materials needs to be adaptive, multi-purpose and tunable. This can be achieved by structure-dominated materials (metamaterials) that explore new geometries to achieve unprecedented properties and functionality. “However, metamaterial design has relied on extensive experimentation and a trial-and-error approach”, explains Bessa. “We argue in favour of inverting the process by using machine learning for exploring new design possibilities, while reducing experimentation to an absolute minimum.”

“We follow a computational data-driven approach for exploring a new metamaterial concept and adapting it to different target properties, choice of base materials, length-scales, and manufacturing processes.” Guided by machine learning, Bessa fabricated two designs at different length scales that transform brittle polymers into lightweight, recoverable and super-compressible metamaterials. The macro-scale design is tuned for maximum compressibility, while the micro-scale is designed for high strength and stiffness.

Machine learning offers scientists the opportunity to shift the design process from experimentally-guided investigations to computationally data-driven ones. Machine learning algorithms can find areas of the design space that people had never considered before. There is certainly much promise in this space, as Bessa concludes: “Data-driven science will revolutionize the way we reach new discoveries, and I can’t wait to see what the future will bring us.”

Read the research article in full

Bayesian Machine Learning in Metamaterial Design: Fragile Becomes Supercompressible
Miguel A. Bessa, Piotr Glowacki and Michael Houlder
Advanced Materials (2019)

The code behind the discovery

The team have made the code accessible to all, and you can check it out here.




Miguel Bessa is an assistant professor at TU Delft.
Miguel Bessa is an assistant professor at TU Delft.




            AIhub is supported by:


Related posts :



Generating a biomedical knowledge graph question answering dataset

  17 Jan 2025
Introducing PrimeKGQA - a scalable approach to dataset generation, harnessing the power of large language models.

The Machine Ethics podcast: 2024 in review with Karin Rudolph and Ben Byford

Karin Rudolph and Ben Byford talk about 2024 touching on the EU AI Act, agent-based AI and advertising, AI search and access to information, conflicting goals of many AI agents, and much more.

Playbook released with guidance on creating images of AI

  15 Jan 2025
Archival Images of AI project enables the creation of meaningful and compelling images of AI.

The Good Robot podcast: Lithium extraction in the Atacama with Sebastián Lehuedé

  13 Jan 2025
Eleanor and Kerry chat to Sebastián Lehuedé about data activism, the effects of lithium extraction, and the importance of reflexive research ethics.

Interview with Erica Kimei: Using ML for studying greenhouse gas emissions from livestock

  10 Jan 2025
Find out about work that brings together agriculture, environmental science, and advanced data analytics.

TELL: Explaining neural networks using logic

  09 Jan 2025
Alessio and colleagues have developed a neural network that can be directly transformed into logic.

Will AI revolutionize drug development? Researchers explain why it depends on how it’s used

  09 Jan 2025
Why we should be cautious about ambitious claims regarding AI models for new drugs.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association