ΑΙhub.org
 

Combining AI and human expertise for cancer diagnosis


by
19 March 2020



share this:
Hamid Tizhoosh
Hamid Tizhoosh in his lab at the University of Waterloo. Image: University of Waterloo.

A new system combining artificial intelligence (AI) with human knowledge promises faster and more accurate cancer diagnosis.

The powerful technology, developed by a team led by engineering researchers at the University of Waterloo, uses digital images of tissue samples to match new cases of suspected cancer with previously diagnosed cases in a database.

In tests using the largest publicly available archive in the world – comprised of about 30,000 digitized slides from almost 11,000 patients – the technology achieved up to 100-per-cent accuracy for 32 forms of cancer in 25 organs and body parts.

“AI can help us tap into our medical wisdom, which at the moment is just sitting in archives,” said Hamid Tizhoosh, director of the Laboratory for Knowledge Inference in Medical Image Analysis (KIMIA Lab) at Waterloo. “When you use AI like this, its performance is astounding.”

The system utilizes AI to search digital images of biopsies from confirmed cancer cases for those most similar to a new digital image in an undiagnosed case.

Based on the known, verified findings of the majority of similar images, the system recommends a diagnosis for the new case.

Conducted over four months using high-performance computers and data storage, the tests achieved accurate diagnoses for everything from melanoma to prostate cancer.

“We showed it is possible using this approach to get incredibly encouraging results if you have access to a large archive,” said Tizhoosh. “It is like putting many, many pathologists in a virtual room together and having them reach consensus.”

The archive used in the study, part of a five-year project backed by $3.2 million in funding from the Ontario government, was provided by the National Cancer Institute in the United States.

More work is needed to analyze the findings and refine the system, but Tizhoosh said the results so far demonstrate it has potential as a screening tool to both speed up and improve the accuracy of cancer diagnoses by pathologists.

And in the developing world, it could save lives by enabling remote access to inexpensive diagnosis.

“This technology could be a blessing in places where there simply aren’t enough specialists,” Tizhoosh said. “One could just send an image attached to an email and get a report back.”

Project sponsor Huron Digital Pathology of St. Jacobs, Ontario is currently working to commercialize the technology.

A paper on the research, Pan-Cancer Diagnostic Consensus Through Searching Archival Histopathology Images Using Artificial Intelligence, appears in the journal Nature Digital Medicine.




University of Waterloo




            AIhub is supported by:



Related posts :



What are small language models and how do they differ from large ones?

  06 Jan 2026
Let’s explore what makes SLMs and LLMs different – and how to choose the right one for your situation.

Forthcoming machine learning and AI seminars: January 2026 edition

  05 Jan 2026
A list of free-to-attend AI-related seminars that are scheduled to take place between 5 January and 28 February 2026.

AAAI presidential panel – AI perception versus reality video discussion

  02 Jan 2026
Watch the second panel discussion in this series from AAAI.

More than half of new articles on the internet are being written by AI

  31 Dec 2025
The line between human and machine authorship is blurring, particularly as it’s become increasingly difficult to tell whether something was written by a person or AI.
monthly digest

2025 digest of digests

  30 Dec 2025
We look back through the archives of our monthly digests to pick out some highlights from the year.
monthly digest

AIhub monthly digest: December 2025 – studying bias in AI-based recruitment tools, an image dataset for ethical AI benchmarking, and end of year com

  29 Dec 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Half of UK novelists believe AI is likely to replace their work entirely

  24 Dec 2025
A new report asks literary creatives about their views on generative AI tools and LLM-authored books.

RL without TD learning

  23 Dec 2025
This post introduces a reinforcement learning algorithm based on a divide and conquer paradigm.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence