ΑΙhub.org
 

Machine learning tool may help us better understand RNA viruses

rna_secondary_structure
E2Efold is an end-to-end deep learning model developed at Georgia Tech that can predict RNA secondary structures, an important task used in virus analysis, drug design, and other public health applications.

Although the model has yet to be used in real-life applications, in research testing it has shown at least a 10 percent improvement in structure prediction accuracy compared to previous state-of-the-art methods according to Xinshi Chen, a Georgia Tech Ph.D. student specializing in machine learning and co-developer of the new tool.

“The model uses an unrolled algorithm for solving a constrained optimization as a component in the neural network architecture, so that it can directly incorporate a solution constraint, or prior knowledge, to predict the RNA base-pairing matrix,” said Chen.

E2Efold is not only more accurate, it is also considerably faster than current techniques.

Current methods are dynamic programming based, which is a much slower approach for predicting longer RNA sequences, such as the genomic RNA in a virus. E2Efold overcomes this drawback by using a gradient-based unrolled algorithm. It also takes advantage of graphic processing units to accelerate its computing process and is now the fastest method available.

RNA, or ribonucleic acid, is an essential building block that governs gene expression and is particularly important for RNA viruses, which consist only of RNA and the enwrapping virion proteins. These types of viruses make up a wide array of infectious diseases, including SARS, Dengue fever, the common cold, and others.

“Unlike most organisms, the genetic information of an RNA virus is RNA. As a result, almost every stage in the RNA virus life cycle relies on RNA heavily,” said Yu Li, a computational bioscience researcher from King Abdullah University of Science and Technology (KAUST) and co-investigator.

“Take SARS, as an example. It belongs to an RNA virus. If we can predict its secondary and 3D structure accurately, based on its sequence information, we can potentially design drugs to bind to its local binding pocket and block the RNA from functioning. In other words, researchers might be able to develop treatments for the virus based on the specific local structure of the target RNA using this method as a starting point,” said Li.

One additional noteworthy ability of E2Efold is its ability to solve for pseudoknots. Pseudoknots are a biologically important RNA secondary structure that are present in roughly 40 percent of RNAs and assist with folding into 3D structures.

RNA nested structure and pseudoknot

“Most previous models were restricted to only predict one type of RNA structure called nested structures. This excluded pseudoknots all together because they were computationally expensive,” said Chen. “In this paper, we predict RNA structures with pseudoknots by adopting a feed-forward model with a 25 percent greater accuracy than previous versions.”

Led by Georgia Tech School of Computational Science and Engineering (CSE) Associate Professor Le Song and KAUST Associate Professor Xin Gao, the team of researchers who created the model will present the paper outlining their findings at the International Conference on Learning Representations (ICLR) 2020.

Although the focus of the paper is on RNA secondary prediction, E2Efold’s end-to-end deep learning approach is generic enough to also be applied to other problems such as protein folding and natural language understanding.




Machine Learning Center at Georgia Tech




            AIhub is supported by:


Related posts :



Interview with AAAI Fellow Roberto Navigli: multilingual natural language processing

  21 Mar 2025
Roberto tells us about his career path, some big research projects he’s led, and why it’s important to follow your passion.

Museums have tons of data, and AI could make it more accessible − but standardizing and organizing it across fields won’t be easy

  20 Mar 2025
How can AI models help organize large amounts of data from different collections, and what are the challenges?

Shlomo Zilberstein wins the 2025 ACM/SIGAI Autonomous Agents Research Award

  19 Mar 2025
Congratulations to Shlomo Zilberstein on winning this prestigious award!

#AAAI2025 workshops round-up 1: Artificial intelligence for music, and towards a knowledge-grounded scientific research lifecycle

  18 Mar 2025
We hear from the organisers of two workshops at AAAI2025 and find out the key takeaways from their events.

The Good Robot podcast: Re-imagining voice assistants with Stina Hasse Jørgensen and Frederik Juutilainen

  17 Mar 2025
Eleanor and Kerry chat to Stina Hasse Jørgensen and Frederik Juutilainen about an experimental research project that created an alternative voice assistant.

Visualizing research in the age of AI

  14 Mar 2025
Felice Frankel discusses the implications of generative AI when communicating science visually.

#IJCAI panel on communicating about AI with the public

  13 Mar 2025
A recording of this session at IJCAI2024 is now available to watch.

Interview with Tunazzina Islam: Understand microtargeting and activity patterns on social media

  11 Mar 2025
Hear from Doctoral Consortium participant Tunazzina about her research on computational social science, natural language processing, and social media mining and analysis




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association