ΑΙhub.org
 

Machine learning technique helps wearable devices get better at diagnosing sleep disorders and quality

wearable devices sleep

Getting diagnosed with a sleep disorder or assessing quality of sleep is an often expensive and tricky proposition, involving sleep clinics where patients are hooked up to sensors and wires for monitoring.

Wearable devices, such as the Fitbit and Apple Watch, offer less intrusive and more cost-effective sleeping monitoring, but the tradeoff can be inaccurate or imprecise sleep data.

Researchers at the Georgia Institute of Technology are working to combine the accuracy of sleep clinics with the convenience of wearable computing by developing machine learning models, or smart algorithms, that provide better sleep measurement data as well as considerably faster, more energy-efficient software.

The team is focusing on electrical ambient noise that is emitted by devices but that is often not audible and can interfere with sleep sensors on a wearable gadget. Leave the TV on at night, and the electrical signal – not the infomercial in the background – might mess with your sleep tracker.

These additional electrical signals are problematic for wearable devices that typically have only one sensor to measure a single biometric data point, normally heart rate. A device picking up signals from ambient electrical noise skews the data and leads to potentially misleading results.

“We are building a new process to help train [machine learning] models to be used for the home environment and help address this and other issues around sleep,” said Scott Freitas, a second-year machine learning Ph.D. student and co-lead author of a newly published paper.

The team employed adversarial training in tandem with spectral regularization, a technique that makes neural networks more robust to electrical signals in the input data. This means that the system can accurately assess sleep stages even when an EEG signal is corrupted by additional signals like a TV or washing machine.

Using machine-learning methods such as sparsity regularization, the new model can also compress the amount of time it takes to gather and analyze data, as well as increase energy efficiency of the wearable device.

The researchers are testing with a product worn on the head but hope to also integrate it into smartwatches and bracelets. Results would then be transmitted to a person’s doctor to analyze and provide a diagnosis. This could result in fewer visits to the doctor, reducing the cost, time, and stress involved with receiving a sleep disorder diagnosis.

Another issue that the researchers are looking at is reducing the amount of sensors needed to accurately track sleep.

“When someone visits a sleep clinic, they are hooked up to all kinds of monitors and wires to gather data ranging from brain activity on EEG’s, heart rate, and more. Wearable tech only monitors heart rate with one sensor. The one sensor is more ideal and comfortable, so we are looking for a way to get more data without adding more wires or sensors,” said Rahul Duggal, a second-year computer science Ph.D. student and co-lead author.

The team’s work is published in the paper REST: Robust and Efficient Neural Networks for Sleep Monitoring in the Wild, accepted to the International World Wide Web Conference (WWW), scheduled to take place on 20-24 April in Taipei, Taiwan (now an online-only event).

Related research:
New deep learning approach improves access to sleep diagnostic testing




Allie McFadden is the communications officer for the Machine Learning Center at Georgia Tech and the Constellations Center for Equity in Computing at Georgia Tech.
Allie McFadden is the communications officer for the Machine Learning Center at Georgia Tech and the Constellations Center for Equity in Computing at Georgia Tech.

Machine Learning Center at Georgia Tech




            AIhub is supported by:



Related posts :



monthly digest

AIhub monthly digest: August 2025 – causality and generative modelling, responsible multimodal AI, and IJCAI in Montréal and Guangzhou

  29 Aug 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Interview with Benyamin Tabarsi: Computing education and generative AI

  28 Aug 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

The value of prediction in identifying the worst-off: Interview with Unai Fischer Abaigar

  27 Aug 2025
We hear from the winner of an outstanding paper award at ICML2025.

#IJCAI2025 social media round-up: part two

  26 Aug 2025
Find out what the participants got up to during the main part of the conference.

AI helps chemists develop tougher plastics

  25 Aug 2025
Researchers created polymers that are more resistant to tearing by incorporating stress-responsive molecules identified by a machine learning model.

RoboCup@Work League: Interview with Christoph Steup

  22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

  21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.

Congratulations to the #IJCAI2025 distinguished paper award winners

  20 Aug 2025
Find out who has won the prestigious awards at the International Joint Conference on Artificial Intelligence.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence