ΑΙhub.org
 

A deep learning framework for analysis of astronomical images


by
29 May 2020



share this:
Galaxy

Researchers have developed a model for generating pixel-level morphological classifications of astronomical sources. Morpheus can analyze astronomical image data pixel-by-pixel to identify and classify all of the galaxies and stars in large data sets from astronomy surveys.

Morphology represents the structural end state of the galaxy formation process, and astronomers have long connected the morphological character of galaxies to the physics of their formation. Therefore, being able to measure such morphologies is a very important task in observational astronomy.

Characterizing large numbers of galaxies with descriptive classifications simultaneously requires the following:

  • Expertise – domain knowledge of galaxy morphology
  • Efficiency – the capability to evaluate quickly each galaxy
  • Scalability – a capacity to work on significant galaxy populations
  • Preprocessing – some analysis of the data to identify galaxy candidates for classification
  • Data model – images in a format that enables the characteristic structures to be recognized
  • Accuracy – reliable classifications

There are a number of models that have addressed many of these requirements in complimentary ways. For example, the citizen science Galaxy Zoo project where members of the public help in the classification of images. Others have used deep-learning methods to catalogue morphologies.

Machine learning techniques provide a powerful toolkit to help address all of these requirements in one model. In this work the researchers extend previous efforts by applying semantic segmentation using a neural network inspired by the U-Net architecture (essentially a convolutional neural network). This allows them to deliver pixel-level separation between sources and the background sky, and provides an automated classification of the source pixels. Within the same framework, Morpheus enables further classification of the source pixels into additional “classes”: spheroid, disk, irregular, point source/compact, and background. The team evaluated the performance of Morpheus on data from the Hubble Space Telescope.

You can watch Morpheus in action in this video produced by the researchers:

The code and datasets are open-source and can be accessed here. Tutorials for using the Morpheus deep learning framework have been created and publicly released as Jupyter notebooks.

Read the research article

Morpheus: A Deep Learning Framework For Pixel-Level Analysis of Astronomical Image Data
Ryan Hausen and Brant E. Robertson
The Astrophysical Journal

The paper is also posted on arXiv.

The Morpheus project page.

The Morpheus GitHub page.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



Guarding Europe’s hidden lifelines: how AI could protect subsea infrastructure

  15 Jan 2026
EU-funded researchers are developing AI-powered surveillance tools to protect the vast network of subsea cables and pipelines that keep the continent’s energy and data flowing.

What’s coming up at #AAAI2026?

  14 Jan 2026
Find out what's on the programme at the annual AAAI Conference on Artificial Intelligence.

Taking humanoid soccer to the next level: An interview with RoboCup trustee Alessandra Rossi

  13 Jan 2026
Find out more about the forthcoming changes to the RoboCup soccer leagues.

Robots to navigate hiking trails

  12 Jan 2026
Find out more about work presented at IROS 2025 on autonomous hiking trail navigation via semantic segmentation and geometric analysis.

AAAI presidential panel – AI reasoning

  09 Jan 2026
Watch the third panel discussion in this series from AAAI.

The Machine Ethics podcast: Companion AI with Giulia Trojano

Ben chats to Giulia Trojano about AI as an economic narrative, companion chatbots, deskilling of digital literacy, chatbot parental controls, differences between social AI and general AI services and more.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence