ΑΙhub.org
 

A deep learning framework for analysis of astronomical images

by
29 May 2020



share this:
Galaxy

Researchers have developed a model for generating pixel-level morphological classifications of astronomical sources. Morpheus can analyze astronomical image data pixel-by-pixel to identify and classify all of the galaxies and stars in large data sets from astronomy surveys.

Morphology represents the structural end state of the galaxy formation process, and astronomers have long connected the morphological character of galaxies to the physics of their formation. Therefore, being able to measure such morphologies is a very important task in observational astronomy.

Characterizing large numbers of galaxies with descriptive classifications simultaneously requires the following:

  • Expertise – domain knowledge of galaxy morphology
  • Efficiency – the capability to evaluate quickly each galaxy
  • Scalability – a capacity to work on significant galaxy populations
  • Preprocessing – some analysis of the data to identify galaxy candidates for classification
  • Data model – images in a format that enables the characteristic structures to be recognized
  • Accuracy – reliable classifications

There are a number of models that have addressed many of these requirements in complimentary ways. For example, the citizen science Galaxy Zoo project where members of the public help in the classification of images. Others have used deep-learning methods to catalogue morphologies.

Machine learning techniques provide a powerful toolkit to help address all of these requirements in one model. In this work the researchers extend previous efforts by applying semantic segmentation using a neural network inspired by the U-Net architecture (essentially a convolutional neural network). This allows them to deliver pixel-level separation between sources and the background sky, and provides an automated classification of the source pixels. Within the same framework, Morpheus enables further classification of the source pixels into additional “classes”: spheroid, disk, irregular, point source/compact, and background. The team evaluated the performance of Morpheus on data from the Hubble Space Telescope.

You can watch Morpheus in action in this video produced by the researchers:

The code and datasets are open-source and can be accessed here. Tutorials for using the Morpheus deep learning framework have been created and publicly released as Jupyter notebooks.

Read the research article

Morpheus: A Deep Learning Framework For Pixel-Level Analysis of Astronomical Image Data
Ryan Hausen and Brant E. Robertson
The Astrophysical Journal

The paper is also posted on arXiv.

The Morpheus project page.

The Morpheus GitHub page.




Lucy Smith , Managing Editor for AIhub.
Lucy Smith , Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



Keeping learning-based control safe by regulating distributional shift

We propose a new framework to reason about the safety of a learning-based controller with respect to its training distribution.
30 September 2022, by

Bipedal robot achieves Guinness World Record in 100 metres

Cassie the robot, developed at Oregon State University, records the fastest 100 metres by a bipedal robot.
29 September 2022, by

#IJCAI2022 distinguished paper – Plurality veto: A simple voting rule achieving optimal metric distortion

How can we create a voting system that best represents the preferences of the voters?
28 September 2022, by

AIhub monthly digest: September 2022 – environmental conservation, retrosynthesis, and RoboCup

Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.
27 September 2022, by

The Machine Ethics Podcast: Rights, trust and ethical choice with Ricardo Baeza-Yates

Host Ben Byford chats to Ricardo Baeza-Yates about responsible AI, the importance of AI governance, questioning people's intent to create AGI, and more.
26 September 2022, by

Recurrent model-free RL can be a strong baseline for many POMDPs

Considering an approach for dealing with realistic problems with noise and incomplete information.
23 September 2022, by





©2021 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association