ΑΙhub.org
 

A deep learning framework for analysis of astronomical images

by
29 May 2020



share this:
Galaxy

Researchers have developed a model for generating pixel-level morphological classifications of astronomical sources. Morpheus can analyze astronomical image data pixel-by-pixel to identify and classify all of the galaxies and stars in large data sets from astronomy surveys.

Morphology represents the structural end state of the galaxy formation process, and astronomers have long connected the morphological character of galaxies to the physics of their formation. Therefore, being able to measure such morphologies is a very important task in observational astronomy.

Characterizing large numbers of galaxies with descriptive classifications simultaneously requires the following:

  • Expertise – domain knowledge of galaxy morphology
  • Efficiency – the capability to evaluate quickly each galaxy
  • Scalability – a capacity to work on significant galaxy populations
  • Preprocessing – some analysis of the data to identify galaxy candidates for classification
  • Data model – images in a format that enables the characteristic structures to be recognized
  • Accuracy – reliable classifications

There are a number of models that have addressed many of these requirements in complimentary ways. For example, the citizen science Galaxy Zoo project where members of the public help in the classification of images. Others have used deep-learning methods to catalogue morphologies.

Machine learning techniques provide a powerful toolkit to help address all of these requirements in one model. In this work the researchers extend previous efforts by applying semantic segmentation using a neural network inspired by the U-Net architecture (essentially a convolutional neural network). This allows them to deliver pixel-level separation between sources and the background sky, and provides an automated classification of the source pixels. Within the same framework, Morpheus enables further classification of the source pixels into additional “classes”: spheroid, disk, irregular, point source/compact, and background. The team evaluated the performance of Morpheus on data from the Hubble Space Telescope.

You can watch Morpheus in action in this video produced by the researchers:

The code and datasets are open-source and can be accessed here. Tutorials for using the Morpheus deep learning framework have been created and publicly released as Jupyter notebooks.

Read the research article

Morpheus: A Deep Learning Framework For Pixel-Level Analysis of Astronomical Image Data
Ryan Hausen and Brant E. Robertson
The Astrophysical Journal

The paper is also posted on arXiv.

The Morpheus project page.

The Morpheus GitHub page.




Lucy Smith , Managing Editor for AIhub.
Lucy Smith , Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



Watch the sessions from AI UK

The recordings of the sessions from the AI UK conference are now available for all to watch.
16 May 2022, by

Launch of a new standard for AI security in Singapore

The standard aims to guide AI practitioners in dealing with malicious attacks on AI systems.

Using deep learning to predict physical interactions of protein complexes

A computational tool developed to predict the structure of protein complexes is providing new insights into the biomolecular mechanisms of their function.
podcast

New voices in AI: human-AI collaboration, with Nicolo' Brandizzi

We talk to Nicolo' Brandizzi about his work on human-AI collaboration.
11 May 2022, by

ACM SIGAI Industry Award 2022 nominations

Find out how you can make a nomination for the ACM SIGAI Industry Award - deadline 31 May 2022.
10 May 2022, by

Forthcoming machine learning and AI seminars: May 2022 edition

A list of free-to-attend AI-related seminars that are scheduled to take place between 9 May 2022 and 30 June 2022.
09 May 2022, by





©2021 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association