ΑΙhub.org
 

A deep learning framework for analysis of astronomical images

by
29 May 2020



share this:
Galaxy

Researchers have developed a model for generating pixel-level morphological classifications of astronomical sources. Morpheus can analyze astronomical image data pixel-by-pixel to identify and classify all of the galaxies and stars in large data sets from astronomy surveys.

Morphology represents the structural end state of the galaxy formation process, and astronomers have long connected the morphological character of galaxies to the physics of their formation. Therefore, being able to measure such morphologies is a very important task in observational astronomy.

Characterizing large numbers of galaxies with descriptive classifications simultaneously requires the following:

  • Expertise – domain knowledge of galaxy morphology
  • Efficiency – the capability to evaluate quickly each galaxy
  • Scalability – a capacity to work on significant galaxy populations
  • Preprocessing – some analysis of the data to identify galaxy candidates for classification
  • Data model – images in a format that enables the characteristic structures to be recognized
  • Accuracy – reliable classifications

There are a number of models that have addressed many of these requirements in complimentary ways. For example, the citizen science Galaxy Zoo project where members of the public help in the classification of images. Others have used deep-learning methods to catalogue morphologies.

Machine learning techniques provide a powerful toolkit to help address all of these requirements in one model. In this work the researchers extend previous efforts by applying semantic segmentation using a neural network inspired by the U-Net architecture (essentially a convolutional neural network). This allows them to deliver pixel-level separation between sources and the background sky, and provides an automated classification of the source pixels. Within the same framework, Morpheus enables further classification of the source pixels into additional “classes”: spheroid, disk, irregular, point source/compact, and background. The team evaluated the performance of Morpheus on data from the Hubble Space Telescope.

You can watch Morpheus in action in this video produced by the researchers:

The code and datasets are open-source and can be accessed here. Tutorials for using the Morpheus deep learning framework have been created and publicly released as Jupyter notebooks.

Read the research article

Morpheus: A Deep Learning Framework For Pixel-Level Analysis of Astronomical Image Data
Ryan Hausen and Brant E. Robertson
The Astrophysical Journal

The paper is also posted on arXiv.

The Morpheus project page.

The Morpheus GitHub page.




Lucy Smith , Managing Editor for AIhub.
Lucy Smith , Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



AIhub monthly digest: October 2021 – life on land, foundation models and Beethoven’s 10th

Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.
27 October 2021, by

Unsolved ML safety problems

We provide a new roadmap for ML Safety and aim to refine the technical problems that the field needs to address.
26 October 2021, by

How to avoid hype when promoting your AI research

The AIhub trustees have compiled a handy guide to help you avoid hype when communicating your research.
25 October 2021, by

The Machine Ethics Podcast: AI readiness with Tim El-Sheikh

In this episode, Ben chats with Tim El-Sheikh about ethical AI as the smarter AI, the importance of a business AI strategy, getting data ready, and more.
22 October 2021, by

Join our team of AIhub ambassadors!

We are looking for people to join us as AIhub ambassadors.
21 October 2021, by

Interview with Lily Xu – applying machine learning to the prevention of illegal wildlife poaching

Lily Xu tells us about her work applying machine learning and game theory to wildlife conservation.
20 October 2021, by





©2021 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association